Skip to main content
Log in

Betacellulin ameliorates hyperglycemia in obese diabetic db/db mice

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

We found that administration of a recombinant adenovirus (rAd) expressing betacellulin (BTC) into obese diabetic db/db mice ameliorated hyperglycemia. Exogenous glucose clearance was significantly improved, and serum insulin levels were significantly higher in rAd-BTC-treated mice than rAd-β-gal-treated control mice. rAd-BTC treatment increased insulin/bromodeoxyuridine double-positive cells in the islets, and islets from rAd-BTC-treated mice exhibited a significant increase in the level of G1-S phase-related cyclins as compared with control mice. In addition, BTC treatment increased messenger RNA (mRNA) and protein levels of these cyclins and cyclin-dependent kinases in MIN-6 cells. BTC treatment induced intracellular Ca2+ levels through phospholipase C-γ1 activation, and upregulated calcineurin B (CnB1) levels as well as calcineurin activity. Upregulation of CnB1 by BTC treatment was observed in isolated islet cells from db/db mice. When treated with CnB1 small interfering RNA (siRNA) in MIN-6 cells and isolated islets, induction of cell cycle regulators by BTC treatment was blocked and consequently reduced BTC-induced cell viability. As well as BTC’s effects on cell survival and insulin secretion, our findings demonstrate a novel pathway by which BTC controls beta-cell regeneration in the obese diabetic condition by regulating G1-S phase cell cycle expression through Ca2+ signaling pathways.

Key messages

  • Administration of BTC to db/db mice results in amelioration of hyperglycemia.

  • BTC stimulates beta-cell proliferation in db/db mice.

  • Ca2+ signaling was involved in BTC-induced beta-cell proliferation.

  • BTC has an anti-apoptotic effect and potentiates glucose-stimulated insulin secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110

    Article  CAS  PubMed  Google Scholar 

  2. Rhodes CJ (2005) Type 2 diabetes-a matter of beta-cell life and death? Science 307:380–384

    Article  CAS  PubMed  Google Scholar 

  3. Shin S, Li N, Kobayashi N, Yoon JW, Jun HS (2008) Remission of diabetes by beta-cell regeneration in diabetic mice treated with a recombinant adenovirus expressing betacellulin. Mol Ther 16:854–861

    Article  CAS  PubMed  Google Scholar 

  4. Yamamoto Y, Yamada S, Kodera T, Hara A, Motoyoshi K, Tanaka Y, Nagaoka T, Seno M, Kojima I (2008) Reversal of streptozotocin-induced hyperglycemia by continuous supply of betacellulin in mice. Growth Factors 26:173–179

    Article  CAS  PubMed  Google Scholar 

  5. Yamamoto K, Miyagawa J, Waguri M, Sasada R, Igarashi K, Li M, Nammo T, Moriwaki M, Imagawa A, Yamagata K et al (2000) Recombinant human betacellulin promotes the neogenesis of beta-cells and ameliorates glucose intolerance in mice with diabetes induced by selective alloxan perfusion. Diabetes 49:2021–2027

    Article  CAS  PubMed  Google Scholar 

  6. Li L, Seno M, Yamada H, Kojima I (2001) Promotion of beta-cell regeneration by betacellulin in ninety percent-pancreatectomized rats. Endocrinology 142:5379–5385

    CAS  PubMed  Google Scholar 

  7. Oh YS, Shin S, Lee YJ, Kim EH, Jun HS (2011) Betacellulin-induced beta cell proliferation and regeneration is mediated by activation of ErbB-1 and ErbB-2 receptors. PLoS One 6, e23894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Howell SL, Taylor KW (1968) Potassium ions and the secretion of insulin by islets of Langerhans incubated in vitro. Biochem J 108:17–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Cozar-Castellano I, Fiaschi-Taesch N, Bigatel TA, Takane KK, Garcia-Ocana A, Vasavada R, Stewart AF (2006) Molecular control of cell cycle progression in the pancreatic beta-cell. Endocr Rev 27:356–370

    Article  CAS  PubMed  Google Scholar 

  10. Dunbar AJ, Goddard C (2000) Structure-function and biological role of betacellulin. Int J Biochem Cell Biol 32:805–815

    Article  CAS  PubMed  Google Scholar 

  11. Perry JE, Grossmann ME, Tindall DJ (1998) Epidermal growth factor induces cyclin D1 in a human prostate cancer cell line. Prostate 35:117–124

    Article  CAS  PubMed  Google Scholar 

  12. Li H, Panina S, Kaur A, Ruano MJ, Sanchez-Gonzalez P, la Cour JM, Stephan A, Olesen UH, Berchtold MW, Villalobo A (2012) Regulation of the ligand-dependent activation of the epidermal growth factor receptor by calmodulin. J Biol Chem 287:3273–3281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kim HK, Kim JW, Zilberstein A, Margolis B, Kim JG, Schlessinger J, Rhee SG (1991) PDGF stimulation of inositol phospholipid hydrolysis requires PLC-gamma 1 phosphorylation on tyrosine residues 783 and 1254. Cell 65:435–441

    Article  CAS  PubMed  Google Scholar 

  14. Ferris CD, Cameron AM, Huganir RL, Snyder SH (1992) Quantal calcium release by purified reconstituted inositol 1,4,5-trisphosphate receptors. Nature 356:350–352

    Article  CAS  PubMed  Google Scholar 

  15. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  CAS  PubMed  Google Scholar 

  16. Cozar-Castellano I, Harb G, Selk K, Takane K, Vasavada R, Sicari B, Law B, Zhang P, Scott DK, Fiaschi-Taesch N et al (2008) Lessons from the first comprehensive molecular characterization of cell cycle control in rodent insulinoma cell lines. Diabetes 57:3056–3068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Fiaschi-Taesch NM, Salim F, Kleinberger J, Troxell R, Cozar-Castellano I, Selk K, Cherok E, Takane KK, Scott DK, Stewart AF (2010) Induction of human beta-cell proliferation and engraftment using a single G1/S regulatory molecule, cdk6. Diabetes 59:1926–1936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kushner JA, Ciemerych MA, Sicinska E, Wartschow LM, Teta M, Long SY, Sicinski P, White MF (2005) Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth. Mol Cell Biol 25:3752–3762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Song WJ, Schreiber WE, Zhong E, Liu FF, Kornfeld BD, Wondisford FE, Hussain MA (2008) Exendin-4 stimulation of cyclin A2 in beta-cell proliferation. Diabetes 57:2371–2381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Georgia S, Bhushan A (2004) Beta cell replication is the primary mechanism for maintaining postnatal beta cell mass. J Clin Invest 114:963–968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Shin HS, Lee HJ, Nishida M, Lee MS, Tamura R, Yamashita S, Matsuzawa Y, Lee IK, Koh GY (2003) Betacellulin and amphiregulin induce upregulation of cyclin D1 and DNA synthesis activity through differential signaling pathways in vascular smooth muscle cells. Circ Res 93:302–310

    Article  CAS  PubMed  Google Scholar 

  22. Kim HS, Shin HS, Kwak HJ, Cho CH, Lee CO, Koh GY (2003) Betacellulin induces angiogenesis through activation of mitogen-activated protein kinase and phosphatidylinositol 3′-kinase in endothelial cell. FASEB J 17:318–320

    CAS  PubMed  Google Scholar 

  23. Nishibe S, Wahl MI, Hernandez-Sotomayor SM, Tonks NK, Rhee SG, Carpenter G (1990) Increase of the catalytic activity of phospholipase C-gamma 1 by tyrosine phosphorylation. Science 250:1253–1256

    Article  CAS  PubMed  Google Scholar 

  24. Wahl MI, Jones GA, Nishibe S, Rhee SG, Carpenter G (1992) Growth factor stimulation of phospholipase C-gamma 1 activity. Comparative properties of control and activated enzymes. J Biol Chem 267:10447–10456

    CAS  PubMed  Google Scholar 

  25. Khan AA, Steiner JP, Klein MG, Schneider MF, Snyder SH (1992) IP3 receptor: localization to plasma membrane of T cells and cocapping with the T cell receptor. Science 257:815–818

    Article  CAS  PubMed  Google Scholar 

  26. Bryant JA, Finn RS, Slamon DJ, Cloughesy TF, Charles AC (2004) EGF activates intracellular and intercellular calcium signaling by distinct pathways in tumor cells. Cancer Biol Ther 3:1243–1249

    Article  CAS  PubMed  Google Scholar 

  27. Lawrence MC, Bhatt HS, Easom RA (2002) NFAT regulates insulin gene promoter activity in response to synergistic pathways induced by glucose and glucagon-like peptide-1. Diabetes 51:691–698

    Article  CAS  PubMed  Google Scholar 

  28. Sjoholm A, Zhang Q, Welsh N, Hansson A, Larsson O, Tally M, Berggren PO (2000) Rapid Ca2+ influx and diacylglycerol synthesis in growth hormone-mediated islet beta-cell mitogenesis. J Biol Chem 275:21033–21040

    Article  CAS  PubMed  Google Scholar 

  29. Frodin M, Sekine N, Roche E, Filloux C, Prentki M, Wollheim CB, Van Obberghen E (1995) Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1. J Biol Chem 270:7882–7889

    Article  CAS  PubMed  Google Scholar 

  30. Aspinwall CA, Qian WJ, Roper MG, Kulkarni RN, Kahn CR, Kennedy RT (2000) Roles of insulin receptor substrate-1, phosphatidylinositol 3-kinase, and release of intracellular Ca2+ stores in insulin-stimulated insulin secretion in beta -cells. J Biol Chem 275:22331–22338

    Article  CAS  PubMed  Google Scholar 

  31. Namkung Y, Skrypnyk N, Jeong MJ, Lee T, Lee MS, Kim HL, Chin H, Suh PG, Kim SS, Shin HS (2001) Requirement for the L-type Ca(2+) channel alpha(1D) subunit in postnatal pancreatic beta cell generation. J Clin Invest 108:1015–1022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Heit JJ (2007) Calcineurin/NFAT signaling in the beta-cell: from diabetes to new therapeutics. BioEssays 29:1011–1021

    Article  CAS  PubMed  Google Scholar 

  33. Screaton RA, Conkright MD, Katoh Y, Best JL, Canettieri G, Jeffries S, Guzman E, Niessen S, Yates JR 3rd, Takemori H et al (2004) The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119:61–74

    Article  CAS  PubMed  Google Scholar 

  34. Crabtree GR, Olson EN (2002) NFAT signaling: choreographing the social lives of cells. Cell 109(Suppl):S67–S79

    Article  CAS  PubMed  Google Scholar 

  35. Wang S, Kang X, Cao S, Cheng H, Wang D, Geng J (2012) Calcineurin/NFATc1 pathway contributes to cell proliferation in hepatocellular carcinoma. Dig Dis Sci 57:3184–3188

    Article  CAS  PubMed  Google Scholar 

  36. Weir M (2001) Impact of immunosuppressive regimes on posttransplant diabetes mellitus. Transplant Proc 33:23S–26S

    Article  CAS  PubMed  Google Scholar 

  37. Heit JJ, Apelqvist AA, Gu X, Winslow MM, Neilson JR, Crabtree GR, Kim SK (2006) Calcineurin/NFAT signalling regulates pancreatic beta-cell growth and function. Nature 443:345–349

    Article  CAS  PubMed  Google Scholar 

  38. Schneider MR, Dahlhoff M, Herbach N, Renner-Mueller I, Dalke C, Puk O, Graw J, Wanke R, Wolf E (2005) Betacellulin overexpression in transgenic mice causes disproportionate growth, pulmonary hemorrhage syndrome, and complex eye pathology. Endocrinology 146:5237–5246

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ann Kyle for editorial assistance.

Funding

This study was supported by the grants from the Innovative Research Institute for Cell Therapy (A062260), the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number : HI14C1135) and National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (NO. 2009–0079342).

Conflict of interest

The authors declare that there is no duality of interest associated with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Sook Jun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 816 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, Y.S., Shin, S., Li, H.Y. et al. Betacellulin ameliorates hyperglycemia in obese diabetic db/db mice. J Mol Med 93, 1235–1245 (2015). https://doi.org/10.1007/s00109-015-1303-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1303-1

Keywords

Navigation