Skip to main content
Log in

TRPC3‐dependent synaptic transmission in central mammalian neurons

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The transient receptor potential (TRPC) proteins form non-selective cation channels that are activated downstream of Gq-phospholipase C-coupled receptors. TRPC3, one of the seven members of the TRPC subfamily, combines functions of an unspecific ion channel and a signal transducer. In the mammalian brain, the expression of TRPC3 is highest in cerebellar Purkinje cells, the principal neurons, and the sole output of the cerebellar cortex. In this review, we summarize findings identifying TRPC3 channels as integral components of glutamatergic metabotropic synaptic transmission. We give an overview of postsynaptic interaction partners and activation mechanisms of TRPC3 in central neurons. Finally, we address the deleterious consequences of distorted TRPC3 synaptic signaling for cerebellar function in different mouse models and present TRPC3 as an emerging candidate protein implicated in various forms of ataxia in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Montell C (2011) The history of TRP channels, a commentary and reflection. Pflugers Arch 461(5):499–506

    Article  CAS  PubMed  Google Scholar 

  2. Clapham DE, Julius D, Montell C, Schultz G (2005) International Union of Pharmacology XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacol Rev 57(4):427–450

    Article  CAS  PubMed  Google Scholar 

  3. Vazquez G, Wedel BJ, Aziz O, Trebak M, Putney JW Jr (2004) The mammalian TRPC cation channels. Biochim Biophys Acta 1742(1-3):21–36

    Article  CAS  PubMed  Google Scholar 

  4. Hartmann J, Dragicevic E, Adelsberger H, Henning HA, Sumser M, Abramowitz J, Blum R, Dietrich A, Freichel M, Flockerzi V et al (2008) TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59(3):392–398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445(7124):168–176

    Article  CAS  PubMed  Google Scholar 

  6. Riccio A, Medhurst AD, Mattei C, Kelsell RE, Calver AR, Randall AD, Benham CD, Pangalos MN (2002) mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res Mol Brain Res 109(1-2):95–104

    Article  CAS  PubMed  Google Scholar 

  7. Yildirim E, Kawasaki BT, Birnbaumer L (2005) Molecular cloning of TRPC3a, an N-terminally extended, store-operated variant of the human C3 transient receptor potential channel. Proc Natl Acad Sci U S A 102(9):3307–3311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Kim Y, Wong AC, Power JM, Tadros SF, Klugmann M, Moorhouse AJ, Bertrand PP, Housley GD (2012) Alternative splicing of the TRPC3 ion channel calmodulin/IP3 receptor-binding domain in the hindbrain enhances cation flux. J Neurosci 32(33):11414–11423

    Article  CAS  PubMed  Google Scholar 

  9. Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci U S A 99(11):7461–7466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Lichtenegger M, Groschner K (2014) TRPC3: a multifunctional signaling molecule. Handb Exp Pharmacol 222:67–84

    Article  CAS  PubMed  Google Scholar 

  11. Kamouchi M, Philipp S, Flockerzi V, Wissenbach U, Mamin A, Raeymaekers L, Eggermont J, Droogmans G, Nilius B (1999) Properties of heterologously expressed hTRP3 channels in bovine pulmonary artery endothelial cells. J Physiol 518(Pt 2):345–358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Zitt C, Obukhov AG, Strübing C, Zobel A, Kalkbrenner F, Luckhoff A, Schultz G (1997) Expression of TRPC3 in Chinese hamster ovary cells results in calcium-activated cation currents not related to store depletion. J Cell Biol 138(6):1333–1341

  13. Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397(6716):259–263

    Article  CAS  PubMed  Google Scholar 

  14. Huang WC, Young JS, Glitsch MD (2007) Changes in TRPC channel expression during postnatal development of cerebellar neurons. Cell Calcium 42(1):1–10

    Article  CAS  PubMed  Google Scholar 

  15. Sekerkova G, Kim JA, Nigro MJ, Becker EB, Hartmann J, Birnbaumer L, Mugnaini E, Martina M (2013) Early onset of ataxia in moonwalker mice is accompanied by complete ablation of type II unipolar brush cells and Purkinje cell dysfunction. J Neurosci 33(50):19689–19694

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Mugnaini E, Sekerkova G, Martina M (2011) The unipolar brush cell: a remarkable neuron finally receiving deserved attention. Brain Res Rev 66(1-2):220–245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ito M (1984) Cerebellum and neural control. Raven Press, New York

  18. Batchelor AM, Madge DJ, Garthwaite J (1994) Synaptic activation of metabotropic glutamate receptors in the parallel fibre-Purkinje cell pathway in rat cerebellar slices. Neuroscience 63(4):911–915

    Article  CAS  PubMed  Google Scholar 

  19. Becker EB, Oliver PL, Glitsch MD, Banks GT, Achilli F, Hardy A, Nolan PM, Fisher EM, Davies KE (2009) A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice. Proc Natl Acad Sci U S A 106:6706–6711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Nusser Z (2000) AMPA and NMDA receptors: similarities and differences in their synaptic distribution. Curr Opin Neurobiol 10(3):337–341

    Article  CAS  PubMed  Google Scholar 

  21. Hartmann J, Henning HA, Konnerth A (2011) mGluR1/TRPC3-mediated synaptic transmission and calcium signaling in mammalian central neurons. Cold Spring Harb Perspect Biol 3(4):A006726

    Article  PubMed Central  PubMed  Google Scholar 

  22. Finch EA, Augustine GJ (1998) Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature 396(6713):753–756

    Article  CAS  PubMed  Google Scholar 

  23. Takechi H, Eilers J, Konnerth A (1998) A new class of synaptic response involving calcium release in dendritic spines. Nature 396(6713):757–760

    Article  CAS  PubMed  Google Scholar 

  24. Hartmann J, Konnerth A (2008) Mechanisms of metabotropic glutamate receptor-mediated synaptic signaling in cerebellar Purkinje cells. Acta Physiol (Oxf) 195(1):79–90

    Article  Google Scholar 

  25. Tempia F, Miniaci MC, Anchisi D, Strata P (1998) Postsynaptic current mediated by metabotropic glutamate receptors in cerebellar Purkinje cells. J Neurophysiol 80(2):520–528

    CAS  PubMed  Google Scholar 

  26. Hirono M, Konishi S, Yoshioka T (1998) Phospholipase C-independent group I metabotropic glutamate receptor-mediated inward current in mouse Purkinje cells. Biochem Biophys Res Commun 251(3):753–758

    Article  CAS  PubMed  Google Scholar 

  27. Hartmann J, Blum R, Kovalchuk Y, Adelsberger H, Kuner R, Durand GM, Miyata M, Kano M, Offermanns S, Konnerth A (2004) Distinct roles of Gαq and Gα11 for Purkinje cell signaling and motor behavior. J Neurosci 24(22):5119–5130

    Article  CAS  PubMed  Google Scholar 

  28. Glitsch MD (2010) Activation of native TRPC3 cation channels by phospholipase D. FASEB J 24:318–325

    Article  PubMed  Google Scholar 

  29. Canepari M, Papageorgiou G, Corrie JE, Watkins C, Ogden D (2001) The conductance underlying the parallel fibre slow EPSP in rat cerebellar Purkinje neurones studied with photolytic release of L-glutamate. J Physiol 533(Pt 3):765–772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Sugiyama T, Hirono M, Suzuki K, Nakamura Y, Aiba A, Nakamura K, Nakao K, Katsuki M, Yoshioka T (1999) Localization of phospholipase Cβ isozymes in the mouse cerebellum. Biochem Biophys Res Commun 265(2):473–478

    Article  CAS  PubMed  Google Scholar 

  31. Kwan HY, Wong CO, Chen ZY, Dominic Chan TW, Huang Y, Yao X (2009) Stimulation of histamine H2 receptors activates TRPC3 channels through both phospholipase C and phospholipase D. Eur J Pharmacol 602(2-3):181–187

    Article  CAS  PubMed  Google Scholar 

  32. Trebak M, Hempel N, Wedel BJ, Smyth JT, Bird GS, Putney JW Jr (2005) Negative regulation of TRPC3 channels by protein kinase C-mediated phosphorylation of serine 712. Mol Pharmacol 67(2):558–563

    Article  CAS  PubMed  Google Scholar 

  33. Nelson C, Glitsch MD (2012) Lack of kinase regulation of canonical transient receptor potential 3 (TRPC3) channel-dependent currents in cerebellar Purkinje cells. J Biol Chem 287(9):6326–6335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Hartmann J, Karl RM, Alexander RP, Adelsberger H, Brill MS, Rühlmann C, Ansel A, Sakimura K, Baba Y, Kurosaki T et al (2014) STIM1 controls neuronal Ca2+ signaling, mGluR1-dependent synaptic transmission, and cerebellar motor behavior. Neuron 82(3):635–644

  35. Salido GM, Jardin I, Rosado JA (2011) The TRPC ion channels: association with Orai1 and STIM1 proteins and participation in capacitative and non-capacitative calcium entry. Adv Exp Med Biol 704:413–433

    Article  CAS  PubMed  Google Scholar 

  36. Klejman ME, Gruszczynska-Biegala J, Skibinska-Kijek A, Wisniewska MB, Misztal K, Blazejczyk M, Bojarski L, Kuznicki J (2009) Expression of STIM1 in brain and puncta-like co-localization of STIM1 and ORAI1 upon depletion of Ca2+ store in neurons. Neurochem Int 54(1):49–55

  37. Garaschuk O, Yaari Y, Konnerth A (1997) Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones. J Physiol 502(Pt 1):13–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Zeng W, Yuan JP, Kim MS, Choi YJ, Huang GN, Worley PF, Muallem S (2008) STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol Cell 32(3):439–448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Kiselyov K, Mignery GA, Zhu MX, Muallem S (1999) The N-terminal domain of the IP3 receptor gates store-operated hTrp3 channels. Mol Cell 4(3):423–429

    Article  CAS  PubMed  Google Scholar 

  40. Gugger OS, Hartmann J, Birnbaumer L, Kapfhammer JP (2011) P/Q-type and T-type calcium channels, but not type 3 transient receptor potential cation channels, are involved in inhibition of dendritic growth after chronic metabotropic glutamate receptor type 1 and protein kinase C activation in cerebellar Purkinje cells. Eur J Neurosci 35(1):20–33

    Article  PubMed  Google Scholar 

  41. Ito M, Yamaguchi K, Nagao S, Yamazaki T (2014) Long-term depression as a model of cerebellar plasticity. Prog Brain Res 210:1–30

    Article  PubMed  Google Scholar 

  42. Chae HG, Ahn SJ, Hong YH, Chang WS, Kim J, Kim SJ (2012) Transient receptor potential canonical channels regulate the induction of cerebellar long-term depression. J Neurosci 32(37):12909–12914

    Article  CAS  PubMed  Google Scholar 

  43. Ebner TJ, Wang X, Gao W, Cramer SW, Chen G (2012) Parasagittal zones in the cerebellar cortex differ in excitability, information processing, and synaptic plasticity. Cerebellum 11(2):418–419

    Article  PubMed  Google Scholar 

  44. Zhou H, Lin Z, Voges K, Ju C, Gao Z, Bosman LW, Ruigrok TJ, Hoebeek FE, De Zeeuw CI, Schonewille M (2014) Cerebellar modules operate at different frequencies. Elife 3, e02536

    PubMed Central  PubMed  Google Scholar 

  45. Roedding AS, Gao AF, Wu AM, Li PP, Kish SJ, Warsh JJ (2009) TRPC3 protein is expressed across the lifespan in human prefrontal cortex and cerebellum. Brain Res 1260:1–6

    Article  CAS  PubMed  Google Scholar 

  46. Serra HG, Duvick L, Zu T, Carlson K, Stevens S, Jorgensen N, Lysholm A, Burright E, Zoghbi HY, Clark HB et al (2006) RORalpha-mediated Purkinje cell development determines disease severity in adult SCA1 mice. Cell 127(4):697–708

    Article  CAS  PubMed  Google Scholar 

  47. Mitsumura K, Hosoi N, Furuya N, Hirai H (2011) Disruption of metabotropic glutamate receptor signalling is a major defect at cerebellar parallel fibre-Purkinje cell synapses in staggerer mutant mice. J Physiol 589(Pt 13):3191–3209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Becker EB, Fogel BL, Rajakulendran S, Dulneva A, Hanna MG, Perlman SL, Geschwind DH, Davies KE (2011) Candidate screening of the TRPC3 gene in cerebellar ataxia. Cerebellum 10(2):296–299

    Article  PubMed Central  PubMed  Google Scholar 

  49. Martin-Trujillo A, Iglesias-Platas I, Coto E, Corral-Juan M, San Nicolas H, Corral J, Volpini V, Matilla-Duenas A, Monk D (2011) Genotype of an individual single nucleotide polymorphism regulates DNA methylation at the TRPC3 alternative promoter. Epigenetics 6(10):1236–1241

    Article  CAS  PubMed  Google Scholar 

  50. Fogel BL, Hanson SM, Becker EB (2015) Do mutations in the murine ataxia gene TRPC3 cause cerebellar ataxia in humans? Mov Disord 30(2):284–286

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (RTG1373 and SFB/TRR 152), the European Commission under the 7th Framework Program (Project Corticonic), and a European Research Council (ERC) Advanced Grant to A.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Hartmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartmann, J., Konnerth, A. TRPC3‐dependent synaptic transmission in central mammalian neurons. J Mol Med 93, 983–989 (2015). https://doi.org/10.1007/s00109-015-1298-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1298-7

Keywords

Navigation