Skip to main content
Log in

The chemical inhibitors of cellular death, PJ34 and Necrostatin-1, down-regulate IL-33 expression in liver

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Interleukin-33 (IL-33), a cytokine belonging to the IL-1 family, is crucially involved in inflammatory pathologies including liver injury and linked to various modes of cell death. However, a link between IL-33 and necroptosis or programmed necrosis in liver pathology remains elusive. We aimed to investigate the regulation of IL-33 during necroptosis-associated liver injury. The possible regulation of IL-33 during liver injury by receptor-interacting protein kinase 1 (RIPK1) and poly(ADP-ribose) polymerase 1 (PARP-1) was investigated in mice in vivo and in hepatic stellate cells in vitro. The liver immunohistopathology, flow cytometry, serum transaminase measurement, ELISA, and qPCR-based cytokine measurement were carried out. By using a chemical approach, we showed that pretreatment of mice with Necrostatin-1 (Nec-1) (inhibitor of RIPK1) and/or PJ34 (inhibitor of PARP-1) significantly protected mice against concanavalin A (ConA) liver injury (aspartate amino-transferase (AST)/alanine amino-transferase (ALT)) associated with down-regulated hepatocyte-specific IL-33 expression. In contrast, the expression level of most systemic cytokines (except for IL-6) or activation of liver immune cells was not altered by chemical inhibitors rather an increased infiltration of neutrophils in the liver. During polyinosine-polycytidylic acid (Poly(I:C))-induced acute hepatitis, liver injury and hepatocyte-specific IL-33 expression was also inhibited by PJ34 without any protective effect of PJ34 in CCl4-induced liver injury. Moreover, PJ34 down-regulated the protein expression of IL-33 in activated hepatic stellate cells by cocktail of cytokines or staurosporine in vitro. In conclusion, we evidenced that the Nec-1/PJ34 is a potent inhibitor of liver injury and Nec-1/PJ34 down-regulated hepatocyte-specific IL-33 expression in the liver in vivo or in hepatic stellate cells in vitro, suggesting IL-33 as a possible readout of necroptosis-involved liver pathologies.

Key message

  • Necroptosis inhibitors can protect mice against liver injury induced by ConA or Poly(I:C).

  • IL-33 expression in liver injury in vivo is inhibited by PJ34.

  • IL-33 expression in hepatic stellate cells in vitro is inhibited by PJ34.

  • Hepatocyte-specific IL-33 expression is down-regulated by Nec-1/PJ34 during hepatitis.

  • IL-33 is a new marker of necroptosis-associated liver injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AST:

Aspartate amino-transferase

ALT:

Alanine amino-transferase

ConA:

Concanavalin A

IL-33:

Interleukin 33

IL-1RAcP:

Interleukin-1 receptor accessory protein

i.v.:

Intravenous

i.p.:

Intraperitoneal

Nec-1:

Necrostatin-1

PARP-1:

Poly(ADP-ribose) polymerase 1

P.I.:

Postinjection

RIPK:

Receptor-interacting protein kinase

Poly(I:C):

Polyinosine-polycytidylic acid

References

  1. Malhi H, Guicciardi ME, Gores GJ (2010) Hepatocyte death: a clear and present danger. Physiol Rev 90:1165–1194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714

    Article  CAS  PubMed  Google Scholar 

  3. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M et al (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–1123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. He S, Wang L, Miao L, Wang T, Du F, Zhao L et al (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137:1100–1111

    Article  CAS  PubMed  Google Scholar 

  5. Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC et al (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science (New York, NY) 325:332–336

    Article  CAS  Google Scholar 

  6. Jurisic V, Srdic-Rajic T, Konjevic G, Bogdanovic G, Colic M (2011) TNF-alpha induced apoptosis is accompanied with rapid CD30 and slower CD45 shedding from K-562 cells. The Journal of membrane biology 239:115–122

    Article  CAS  PubMed  Google Scholar 

  7. Zorde-Khvalevsky E, Abramovitch R, Barash H, Spivak-Pohis I, Rivkin L, Rachmilewitz J et al (2009) Toll-like receptor 3 signaling attenuates liver regeneration. Hepatology 50:198–206

    Article  CAS  PubMed  Google Scholar 

  8. Csak T, Dolganiuc A, Kodys K, Nath B, Petrasek J, Bala S et al (2011) Mitochondrial antiviral signaling protein defect links impaired antiviral response and liver injury in steatohepatitis in mice. Hepatology 53:1917–1931

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Tiegs G, Hentschel J, Wendel A (1992) A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest 90:196–203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Takeda K, Hayakawa Y, Van Kaer L, Matsuda H, Yagita H, Okumura K (2000) Critical contribution of liver natural killer T cells to a murine model of hepatitis. Proc Natl Acad Sci U S A 97:5498–5503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Zheng SJ, Wang P, Tsabary G, Chen YH (2004) Critical roles of TRAIL in hepatic cell death and hepatic inflammation. J Clin Invest 113:58–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Takeda K, Kojima Y, Ikejima K, Harada K, Yamashina S, Okumura K et al (2008) Death receptor 5 mediated-apoptosis contributes to cholestatic liver disease. Proc Natl Acad Sci U S A 105:10895–10900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Beraza N, Malato Y, Sander LE, Al-Masaoudi M, Freimuth J, Riethmacher D et al (2009) Hepatocyte-specific NEMO deletion promotes NK/NKT cell- and TRAIL-dependent liver damage. J Exp Med 206:1727–1737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ni HM, Chen X, Ding WX, Schuchmann M, Yin XM (2008) Differential roles of JNK in ConA/GalN and ConA-induced liver injury in mice. Am J Pathol 173:962–972

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kunstle G, Hentze H, Germann PG, Tiegs G, Meergans T, Wendel A (1999) Concanavalin A hepatotoxicity in mice: tumor necrosis factor-mediated organ failure independent of caspase-3-like protease activation. Hepatology 30:1241–1251

    Article  CAS  PubMed  Google Scholar 

  16. Liedtke C, Bangen JM, Freimuth J, Beraza N, Lambertz D, Cubero FJ et al (2011) Loss of caspase-8 protects mice against inflammation-related hepatocarcinogenesis but induces non-apoptotic liver injury. Gastroenterology 141:2176–2187

    Article  CAS  PubMed  Google Scholar 

  17. Zhou Y, Dai W, Lin C, Wang F, He L, Shen M et al (2013) Protective effects of necrostatin-1 against concanavalin A-induced acute hepatic injury in mice. Mediat Inflamm 2013:706156

    Google Scholar 

  18. Jouan-Lanhouet S, Arshad MI, Piquet-Pellorce C, Martin-Chouly C, Le Moigne-Muller G, Van Herreweghe F et al (2012) TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ 19:2003–2014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738

    Article  CAS  PubMed  Google Scholar 

  20. Kawai T, Akira S (2008) Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 1143:1–20

    Article  CAS  PubMed  Google Scholar 

  21. Weber LW, Boll M, Stampfl A (2003) Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol 33:105–136

    Article  CAS  PubMed  Google Scholar 

  22. Marvie P, Lisbonne M, L’Helgoualc’h A, Rauch M, Turlin B, Preisser L et al (2010) Interleukin-33 overexpression is associated with liver fibrosis in mice and humans. J Cell Mol Med 14:1726–1739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Arshad MI, Piquet-Pellorce C, Samson M (2012) IL-33 and HMGB1 alarmins: sensors of cellular death and their involvement in liver pathology. Liver Int 32:1200–1210

    Article  CAS  PubMed  Google Scholar 

  24. Arshad MI, Rauch M, L’Helgoualc’h A, Julia V, Leite-de-Moraes MC, Lucas-Clerc C et al (2011) NKT cells are required to induce high IL-33 expression in hepatocytes during ConA-induced acute hepatitis. Eur J Immunol 41:2341–2348

    Article  CAS  PubMed  Google Scholar 

  25. Arshad MI, Patrat-Delon S, Piquet-Pellorce C, L’Helgoualc’h A, Rauch M, Genet V et al (2013) Pathogenic mouse hepatitis virus or poly(I:C) induce IL-33 in hepatocytes in murine models of hepatitis. PLoS One 8:e74278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Sakai N, Van Sweringen HL, Quillin RC, Schuster R, Blanchard J, Burns JM et al (2012) Interleukin-33 is hepatoprotective during liver ischemia/reperfusion in mice. Hepatology 56:1468–1478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Arshad MI, Piquet-Pellorce C, L’Helgoualc’h A, Rauch M, Patrat-Delon S, Ezan F et al (2012) Tumor necrosis factor related apoptosis inducing ligand (TRAIL), but not FasL and tumor necrosis factor alpha (TNFa), regulates interleukin (IL)-33 expression in murine hepatocytes during acute hepatitis. Hepatology 56:2353–2362

    Article  CAS  PubMed  Google Scholar 

  28. Carriere V, Roussel L, Ortega N, Lacorre DA, Americh L, Aguilar L et al (2007) IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc Natl Acad Sci U S A 104:282–287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Ali S, Huber M, Kollewe C, Bischoff SC, Falk W, Martin MU (2007) IL-1 receptor accessory protein is essential for IL-33-induced activation of T lymphocytes and mast cells. Proc Natl Acad Sci U S A 104:18660–18665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Volarevic V, Mitrovic M, Milovanovic M, Zelen I, Nikolic I, Mitrovic S et al (2012) Protective role of IL-33/ST2 axis in Con A-induced hepatitis. J Hepatol 56:26–33

    Article  CAS  PubMed  Google Scholar 

  31. Lamkanfi M, Dixit VM (2009) IL-33 raises alarm. Immunity 31:5–7

    Article  CAS  PubMed  Google Scholar 

  32. Cayrol C, Girard JP (2009) The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc Natl Acad Sci U S A 106:9021–9026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Luthi AU, Cullen SP, McNeela EA, Duriez PJ, Afonina IS, Sheridan C et al (2009) Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity 31:84–98

    Article  CAS  PubMed  Google Scholar 

  34. Talabot-Ayer D, Lamacchia C, Gabay C, Palmer G (2009) Interleukin-33 is biologically active independently of caspase-1 cleavage. J Biol Chem 284:19420–19426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Ali S, Nguyen DQ, Falk W, Martin MU (2010) Caspase 3 inactivates biologically active full length interleukin-33 as a classical cytokine but does not prohibit nuclear translocation. Biochem Biophys Res Commun 391:1512–1516

    Article  CAS  PubMed  Google Scholar 

  36. Bourd-Boittin K, Basset L, Bonnier D, L’Helgoualc’h A, Samson M, Theret N (2009) CX3CL1/fractalkine shedding by human hepatic stellate cells: contribution to chronic inflammation in the liver. J Cell Mol Med 13:1526–1535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Lisbonne M, L’Helgoualc’h A, Nauwelaers G, Turlin B, Lucas C, Herbelin A et al (2011) Invariant natural killer T-cell-deficient mice display increased CCl(4)-induced hepatitis associated with CXCL1 over-expression and neutrophil infiltration. Eur J Immunol 41:1720–1732

    Article  CAS  PubMed  Google Scholar 

  38. Diana J, Beaudoin L, Gautron AS, Lehuen A (2011) NKT and tolerance. Methods Mol Biol 677:193–206

    Article  CAS  PubMed  Google Scholar 

  39. Lu JV, Weist BM, van Raam BJ, Marro BS, Nguyen LV, Srinivas P et al (2011) Complementary roles of Fas-associated death domain (FADD) and receptor interacting protein kinase-3 (RIPK3) in T-cell homeostasis and antiviral immunity. Proc Natl Acad Sci U S A 108:15312–15317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Duprez L, Takahashi N, Van Hauwermeiren F, Vandendriessche B, Goossens V, Vanden Berghe T et al (2011) RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35:908–918

    Article  CAS  PubMed  Google Scholar 

  41. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    Article  CAS  PubMed  Google Scholar 

  42. Welz PS, Wullaert A, Vlantis K, Kondylis V, Fernandez-Majada V, Ermolaeva M et al (2011) FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477:330–334

    Article  CAS  PubMed  Google Scholar 

  43. Gunther C, Martini E, Wittkopf N, Amann K, Weigmann B, Neumann H et al (2011) Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature 477:335–339

    Article  PubMed Central  PubMed  Google Scholar 

  44. An J, Mehrhof F, Harms C, Lattig-Tunnemann G, Lee SL, Endres M et al (2013) ARC is a novel therapeutic approach against acetaminophen-induced hepatocellular necrosis. J Hepatol 58:297–305

    Article  CAS  PubMed  Google Scholar 

  45. Takemoto K, Hatano E, Iwaisako K, Takeiri M, Noma N, Ohmae S et al (2014) Necrostatin-1 protects against reactive oxygen species (ROS)-induced hepatotoxicity in acetaminophen-induced acute liver failure. FEBS open bio 4:777–787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Zhang YF, He W, Zhang C, Liu XJ, Lu Y, Wang H et al (2014) Role of receptor interacting protein (RIP)1 on apoptosis-inducing factor-mediated necroptosis during acetaminophen-evoked acute liver failure in mice. Toxicol Lett 225:445–453

    Article  CAS  PubMed  Google Scholar 

  47. Chang L, Kamata H, Solinas G, Luo JL, Maeda S, Venuprasad K et al (2006) The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell 124:601–613

    Article  CAS  PubMed  Google Scholar 

  48. Kaufmann T, Jost PJ, Pellegrini M, Puthalakath H, Gugasyan R, Gerondakis S et al (2009) Fatal hepatitis mediated by tumor necrosis factor TNFalpha requires caspase-8 and involves the BH3-only proteins Bid and Bim. Immunity 30:56–66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Han J, Zhong CQ, Zhang DW (2011) Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nat Immunol 12:1143–1149

    Article  CAS  PubMed  Google Scholar 

  50. Gantner F, Leist M, Lohse AW, Germann PG, Tiegs G (1995) Concanavalin A-induced T-cell-mediated hepatic injury in mice: the role of tumor necrosis factor. Hepatology 21:190–198

    CAS  PubMed  Google Scholar 

  51. Kusters S, Gantner F, Kunstle G, Tiegs G (1996) Interferon gamma plays a critical role in T cell-dependent liver injury in mice initiated by concanavalin A. Gastroenterology 111:462–471

    Article  CAS  PubMed  Google Scholar 

  52. Galluzzi L, Kroemer G (2011) Necroptosis turns TNF lethal. Immunity 35:849–851

    Article  CAS  PubMed  Google Scholar 

  53. Wang HX, Liu M, Weng SY, Li JJ, Xie C, He HL et al (2012) Immune mechanisms of Concanavalin A model of autoimmune hepatitis. World J Gastroenterol 18:119–125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Cressman DE, Greenbaum LE, DeAngelis RA, Ciliberto G, Furth EE, Poli V et al (1996) Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science (New York, NY) 274:1379–1383

    Article  CAS  Google Scholar 

  55. Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z et al (2009) Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci U S A 106:4402–4407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Zhang Y, Jia Y, Zheng R, Guo Y, Wang Y, Guo H et al (2010) Plasma microRNA-122 as a biomarker for viral-, alcohol-, and chemical-related hepatic diseases. Clin Chem 56:1830–1838

    Article  CAS  PubMed  Google Scholar 

  57. Bala S, Petrasek J, Mundkur S, Catalano D, Levin I, Ward J et al (2012) Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology. doi:10.1002/hep.25873

    PubMed Central  PubMed  Google Scholar 

  58. Lee TH, Shank J, Cusson N, Kelliher MA (2004) The kinase activity of Rip1 is not required for tumor necrosis factor-alpha-induced IkappaB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2. J Biol Chem 279:33185–33191

    Article  CAS  PubMed  Google Scholar 

  59. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X et al (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321

    Article  CAS  PubMed  Google Scholar 

  60. Knolle P, Schlaak J, Uhrig A, Kempf P, Meyer zum Buschenfelde KH, Gerken G (1995) Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J Hepatol 22:226–229

    Article  CAS  PubMed  Google Scholar 

  61. Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER (2010) Neutrophil kinetics in health and disease. Trends Immunol 31:318–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by INSERM, the Ministère de l’Education Nationale de la Recherche et de la Technologie, the University of Rennes 1, the Région Bretagne, the “Ligue contre le cancer, comités du grand Ouest”. Muhammad Imran Arshad was supported by a PhD fellowship from the Government of Pakistan and serving as an assistant professor under tenure track system (Higher Education Commission, University of Agriculture, Faisalabad). Sandrine Jouan-Lanhouet was supported by the Association pour la Recherche sur le Cancer (doctoral fellowship). For immunohistochemistry, cytometry analysis, and animal house facilities, we would like to thank the dedicated platforms (i.e., H2P2 (Pascale Bellaud and Roselyne Viel), cytometry platform (Dr. Gersende Lacombe), and animal house platforms (Laurence Touami) of SFR BIOSIT, University of Rennes 1, France.

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Samson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 539 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshad, M.I., Piquet-Pellorce, C., Filliol, A. et al. The chemical inhibitors of cellular death, PJ34 and Necrostatin-1, down-regulate IL-33 expression in liver. J Mol Med 93, 867–878 (2015). https://doi.org/10.1007/s00109-015-1270-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1270-6

Keywords

Navigation