Skip to main content
Log in

Peroxisome proliferator-activated receptor γ inhibits pulmonary hypertension targeting store-operated calcium entry

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

In this study, we investigated the role of peroxisome proliferator-activated receptor γ (PPARγ) on store-operated calcium entry (SOCE) and expression of the main store-operated calcium channel (SOCCs) components, canonical transient receptor potential (TRPC) in chronic hypoxia (CH)-induced pulmonary hypertension (CHPH) rat models. Small interfering RNA (siRNA) knockdown and adenoviral overexpression strategies were constructed for loss-of-function and gain-of-function experiments. PPARγ agonist rosiglitazone attenuates the pathogenesis of CHPH and suppresses Hif-1α, TRPC1, TRPC6 expression in the distal pulmonary arteries (PA), and SOCE in freshly isolated rat distal pulmonary arterial smooth muscle cells (PASMCs). By comprehensive use of knockdown and overexpression studies, and bioinformatical analysis of the TRPC gene promoter and luciferase reporter assay, we demonstrated that PPARγ exerts roles of anti-proliferation, anti-migration, and pro-apoptosis in PASMCs, likely by inhibiting the elevated SOCE and TRPC expression. These effects were inhibited under the conditions of hypoxia or Hif-1α accumulation. We also found that under hypoxia, accumulated Hif-1α protein acts as upstream of suppressed PPARγ level; however, targeted PPARγ rescue acts as negative feedback on suppressing Hif-1α level and Hif-1α mediated signaling pathway. PPARγ inhibits CHPH by targeting SOCE and TRPC via inhibiting Hif-1α expression and signaling transduction.

Key messages

  • Rosiglitazone protects PH by normalizing RVSP but not right ventricle hypotrophy.

  • PPARγ inhibits PASMCs proliferation via targeting SOCE and TRPC by suppressing Hif-1α.

  • PPARγ and Hif-1α share mutual inhibitory regulation in PASMCs.

  • PPARγ restoration might be a beneficial strategy for PH treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Golovina VA, Platoshyn O, Bailey CL, Wang J, Limsuwan A, Sweeney M, Rubin LJ, Yuan JX (2001) Upregulated TRP and enhanced capacitative Ca(2+) entry in human pulmonary artery myocytes during proliferation. Am J Physiol Heart Circ Physiol 280:H746–H755

    CAS  PubMed  Google Scholar 

  2. Wang J, Shimoda LA, Sylvester JT (2004) Capacitative calcium entry and TRPC channel proteins are expressed in rat distal pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 286:L848–L858

    Article  CAS  PubMed  Google Scholar 

  3. Sweeney M, Yu Y, Platoshyn O, Zhang S, McDaniel SS, Yuan JX (2002) Inhibition of endogenous TRP1 decreases capacitative Ca2+ entry and attenuates pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 283:L144–L155

    CAS  PubMed  Google Scholar 

  4. Brough GH, Wu S, Cioffi D, Moore TM, Li M, Dean N, Stevens T (2001) Contribution of endogenously expressed Trp1 to a Ca2+−selective, store-operated Ca2+ entry pathway. FASEB J 15:1727–1738

    Article  CAS  PubMed  Google Scholar 

  5. Cioffi DL, Wu S, Stevens T (2003) On the endothelial cell I(SOC). Cell Calcium 33:323–336

    Article  CAS  PubMed  Google Scholar 

  6. Lin MJ, Leung GP, Zhang WM, Yang XR, Yip KP, Tse CM, Sham JS (2004) Chronic hypoxia-induced upregulation of store-operated and receptor-operated Ca2+ channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension. Circ Res 95:496–505

    Article  CAS  PubMed  Google Scholar 

  7. Jiang BH, Rue E, Wang GL, Roe R, Semenza GL (1996) Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 271:17771–17778

    Article  CAS  PubMed  Google Scholar 

  8. Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 95:7987–7992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Semenza GL (1998) Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev 8:588–594

    Article  CAS  PubMed  Google Scholar 

  10. Semenza GL (2000) Expression of hypoxia-inducible factor 1: mechanisms and consequences. Biochem Pharmacol 59:47–53

    Article  CAS  PubMed  Google Scholar 

  11. Wang J, Weigand L, Lu W, Sylvester JT, Semenza GL, Shimoda LA (2006) Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res 98:1528–1537

    Article  CAS  PubMed  Google Scholar 

  12. Ameshima S, Golpon H, Cool CD, Chan D, Vandivier RW, Gardai SJ, Wick M, Nemenoff RA, Geraci MW, Voelkel NF (2003) Peroxisome proliferator-activated receptor gamma (PPARgamma) expression is decreased in pulmonary hypertension and affects endothelial cell growth. Circ Res 92:1162–1169

    Article  CAS  PubMed  Google Scholar 

  13. Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, Grimaldi PA, Kadowaki T, Lazar MA, O'Rahilly S et al (2006) International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 58:726–741

    Article  CAS  PubMed  Google Scholar 

  14. Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645–650

    Article  CAS  PubMed  Google Scholar 

  15. Gearing KL, Gottlicher M, Teboul M, Widmark E, Gustafsson JA (1993) Interaction of the peroxisome-proliferator-activated receptor and retinoid X receptor. Proc Natl Acad Sci U S A 90:1440–1444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Yki-Jarvinen H (2004) Thiazolidinediones. N Engl J Med 351:1106–1118

    Article  PubMed  Google Scholar 

  17. Matsuda Y, Hoshikawa Y, Ameshima S, Suzuki S, Okada Y, Tabata T, Sugawara T, Matsumura Y, Kondo T (2005) Effects of peroxisome proliferator-activated receptor gamma ligands on monocrotaline-induced pulmonary hypertension in rats. Nihon Kokyuki Gakkai Zasshi 43:283–288

    PubMed  Google Scholar 

  18. Crossno JT Jr, Garat CV, Reusch JE, Morris KG, Dempsey EC, McMurtry IF, Stenmark KR, Klemm DJ (2007) Rosiglitazone attenuates hypoxia-induced pulmonary arterial remodeling. Am J Physiol Lung Cell Mol Physiol 292:L885–L897

    Article  CAS  PubMed  Google Scholar 

  19. Yu AY, Shimoda LA, Iyer NV, Huso DL, Sun X, McWilliams R, Beaty T, Sham JS, Wiener CM, Sylvester JT et al (1999) Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha. J Clin Invest 103:691–696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Godfrey BJ, Akileswaran L, Gold MH (1994) A reporter gene construct for studying the regulation of manganese peroxidase gene expression. Appl Environ Microbiol 60:1353–1358

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Lu W, Ran P, Zhang D, Peng G, Li B, Zhong N, Wang J (2010) Sildenafil inhibits chronically hypoxic upregulation of canonical transient receptor potential expression in rat pulmonary arterial smooth muscle. Am J Physiol Cell Physiol 298:C114–C123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Wang J, Yang K, Xu L, Zhang Y, Lai N, Jiang H, Zhong N, Ran P, Lu W (2013) Sildenafil inhibits hypoxia-induced transient receptor potential canonical protein expression in pulmonary arterial smooth muscle via cGMP-PKG-PPARgamma axis. Am J Respir Cell Mol Biol 49:231–240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471

    Article  CAS  PubMed  Google Scholar 

  24. Collins AR, Meehan WP, Kintscher U, Jackson S, Wakino S, Noh G, Palinski W, Hsueh WA, Law RE (2001) Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 21:365–371

    Article  CAS  PubMed  Google Scholar 

  25. Li AC, Brown KK, Silvestre MJ, Willson TM, Palinski W, Glass CK (2000) Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 106:523–531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Nisbet RE, Bland JM, Kleinhenz DJ, Mitchell PO, Walp ER, Sutliff RL, Hart CM (2010) Rosiglitazone attenuates chronic hypoxia-induced pulmonary hypertension in a mouse model. Am J Respir Cell Mol Biol 42:482–490

    Article  PubMed Central  PubMed  Google Scholar 

  27. Goetze S, Xi XP, Kawano H, Gotlibowski T, Fleck E, Hsueh WA, Law RE (1999) PPAR gamma-ligands inhibit migration mediated by multiple chemoattractants in vascular smooth muscle cells. J Cardiovasc Pharmacol 33:798–806

    Article  CAS  PubMed  Google Scholar 

  28. Law RE, Goetze S, Xi XP, Jackson S, Kawano Y, Demer L, Fishbein MC, Meehan WP, Hsueh WA (2000) Expression and function of PPARgamma in rat and human vascular smooth muscle cells. Circulation 101:1311–1318

    Article  CAS  PubMed  Google Scholar 

  29. Marx N, Schonbeck U, Lazar MA, Libby P, Plutzky J (1998) Peroxisome proliferator-activated receptor gamma activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ Res 83:1097–1103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Burgess HA, Daugherty LE, Thatcher TH, Lakatos HF, Ray DM, Redonnet M, Phipps RP, Sime PJ (2005) PPARgamma agonists inhibit TGF-beta induced pulmonary myofibroblast differentiation and collagen production: implications for therapy of lung fibrosis. Am J Physiol Lung Cell Mol Physiol 288:L1146–L1153

    Article  CAS  PubMed  Google Scholar 

  31. Stenmark KR, Mecham RP (1997) Cellular and molecular mechanisms of pulmonary vascular remodeling. Annu Rev Physiol 59:89–144

    Article  CAS  PubMed  Google Scholar 

  32. Shimoda LA, Sham JS, Shimoda TH, Sylvester JT (2000) L-type Ca(2+) channels, resting [Ca(2+)](i), and ET-1-induced responses in chronically hypoxic pulmonary myocytes. Am J Physiol Lung Cell Mol Physiol 279:L884–L894

    CAS  PubMed  Google Scholar 

  33. Yun Z, Maecker HL, Johnson RS, Giaccia AJ (2002) Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev Cell 2:331–341

    Article  CAS  PubMed  Google Scholar 

  34. Krishnan J, Suter M, Windak R, Krebs T, Felley A, Montessuit C, Tokarska-Schlattner M, Aasum E, Bogdanova A, Perriard E et al (2009) Activation of a HIF1alpha-PPARgamma axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy. Cell Metab 9:512–524

    Article  CAS  PubMed  Google Scholar 

  35. Lee KS, Kim SR, Park SJ, Park HS, Min KH, Jin SM, Lee MK, Kim UH, Lee YC (2006) Peroxisome proliferator activated receptor-gamma modulates reactive oxygen species generation and activation of nuclear factor-kappaB and hypoxia-inducible factor 1alpha in allergic airway disease of mice. J Allergy Clin Immunol 118:120–127

    Article  CAS  PubMed  Google Scholar 

  36. Olmos G, Conde I, Arenas I, Del Peso L, Castellanos C, Landazuri MO, Lucio-Cazana J (2007) Accumulation of hypoxia-inducible factor-1alpha through a novel electrophilic, thiol antioxidant-sensitive mechanism. Cell Signal 19:2098–2105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Qicai Liu and Bing Li for technical assistance and constructive discussion in this study.

Funding sources

This work was supported by NIH (R01-HL093020), National Natural Science Foundation of China (81173112, 81470246, 81170052, 81220108001), Guangdong Natural Science Foundation team (1035101200300000), Guangzhou Department of Education Yangcheng Scholarship (12A001S), Guangzhou Department of Natural Science (2014Y2-00167), and Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2014, W Lu), China.

Conflict of interest

None.

Author contribution

JW initiated and designed the project, analyzed data, and wrote the paper; WL designed the project and edited the paper; YW performed the animal, functional, and molecular experiments; YW, JZ, XY, and JJ performed the molecular experiments; KY and LT edited the paper; YC, QJ, BZ, and XC performed the animal experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenju Lu or Jian Wang.

Additional information

Y Wang, W Lu, and K Yang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2061 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Lu, W., Yang, K. et al. Peroxisome proliferator-activated receptor γ inhibits pulmonary hypertension targeting store-operated calcium entry. J Mol Med 93, 327–342 (2015). https://doi.org/10.1007/s00109-014-1216-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-014-1216-4

Keywords

Navigation