Skip to main content
Log in

Up-regulation of type II collagen gene by 17β-estradiol in articular chondrocytes involves Sp1/3, Sox-9, and estrogen receptor α

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The existence of a link between estrogen deprivation and osteoarthritis (OA) in postmenopausal women suggests that 17β-estradiol (17β-E2) may be a modulator of cartilage homeostasis. Here, we demonstrate that 17β-E2 stimulates, via its receptor human estrogen receptor α 66 (hERα66), type II collagen expression in differentiated and dedifferentiated (reflecting the OA phenotype) articular chondrocytes. Transactivation of type II collagen gene (COL2A1) by ligand-independent transactivation domain (AF-1) of hERα66 was mediated by “GC” binding sites of the −266/−63-bp promoter, through physical interactions between ERα, Sp1/Sp3, Sox9, and p300, as demonstrated in chromatin immunoprecipitation (ChIP) and Re-Chromatin Immuno-Precipitation (Re-ChIP) assays in primary and dedifferentiated cells. 17β-E2 and hERα66 increased the DNA-binding activities of Sp1/Sp3 and Sox-9 to both COL2A1 promoter and enhancer regions. Besides, Sp1, Sp3, and Sox-9 small interfering RNAs (siRNAs) prevented hERα66-induced transactivation of COL2A1, suggesting that these factors and their respective cis-regions are required for hERα66-mediated COL2A1 up-regulation. Our results highlight the genomic pathway by which 17β-E2 and hERα66 modulate Sp1/Sp3 heteromer binding activity and simultaneously participate in the recruitment of the essential factors Sox-9 and p300 involved respectively in the chondrocyte-differentiated status and COL2A1 transcriptional activation. These novel findings could therefore be attractive for tissue engineering of cartilage in OA, by the fact that 17β-E2 could promote chondrocyte redifferentiation.

Key messages

• 17β-E2 up-regulates type II collagen gene expression in articular chondrocytes.

• An ERα66/Sp1/Sp3/Sox-9/p300 protein complex mediates this stimulatory effect.

• This heteromeric complex interacts and binds to Col2a1 promoter and enhancer in vivo.

• Our findings highlight a new regulatory mechanism for 17β-E2 action in chondrocytes.

• 17β-E2 might be an attractive candidate for cartilage engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Goldwasser M, Astley T, Van der Rest M, Glorieux FH (1982) Analysis of the type of collagen present in osteoarthritic human cartilage. Clin Orthop Relat Res 167:296–302

    PubMed  CAS  Google Scholar 

  2. Von der Mark K, Kirsch T, Nerlich A, Kuss A, Weseloh G, Gluckert K, Stoss H (1992) Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. Arthritis Rheum 35:806–811

    Article  PubMed  Google Scholar 

  3. Ala-Kokko L, Kvist AP, Metsaranta M, Kivirikko KI, De Crombrugghe B, Prockop DJ, Vuorio E (1995) Conservation of the sizes of 53 introns and over 100 intronic sequences for the binding of common transcription factors in the human and mouse genes for type II procollagen (COL2A1). Biochem J 308(Pt 3):923–929

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Ryan MC, Sieraski M, Sandell LJ (1990) The human type II procollagen gene: identification of an additional protein-coding domain and location of potential regulatory sequences in the promoter and first intron. Genomics 8:41–48

    Article  PubMed  CAS  Google Scholar 

  5. Ghayor C, Herrouin JF, Chadjichristos C, Ala-Kokko L, Takigawa M, Pujol JP, Galera P (2000) Regulation of human COL2A1 gene expression in chondrocytes. Identification of C-Krox-responsive elements and modulation by phenotype alteration. J Biol Chem 275:27421–27438

    PubMed  CAS  Google Scholar 

  6. Ghayor C, Chadjichristos C, Herrouin JF, Ala-Kokko L, Suske G, Pujol JP, Galera P (2001) Sp3 represses the Sp1-mediated transactivation of the human COL2A1 gene in primary and de-differentiated chondrocytes. J Biol Chem 276:36881–36895

    Article  PubMed  CAS  Google Scholar 

  7. Lefebvre V, Li P, De Crombrugghe B (1998) A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J 17:5718–5733

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Poree B, Kypriotou M, Chadjichristos C, Beauchef G, Renard E, Legendre F, Melin M, Gueret S, Hartmann DJ, Mallein-Gerin F et al (2008) Interleukin-6 (IL-6) and/or soluble IL-6 receptor down-regulation of human type II collagen gene expression in articular chondrocytes requires a decrease of Sp1.Sp3 ratio and of the binding activity of both factors to the COL2A1 promoter. J Biol Chem 283:4850–4865

    Article  PubMed  CAS  Google Scholar 

  9. Bay-Jensen AC, Tabassi NC, Sondergaard LV, Andersen TL, Dagnaes-Hansen F, Garnero P, Kassem M, Delaisse JM (2009) The response to oestrogen deprivation of the cartilage collagen degradation marker, CTX-II, is unique compared with other markers of collagen turnover. Arthritis Res Ther 11:R9

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mouritzen U, Christgau S, Lehmann HJ, Tanko LB, Christiansen C (2003) Cartilage turnover assessed with a newly developed assay measuring collagen type II degradation products: influence of age, sex, menopause, hormone replacement therapy, and body mass index. Ann Rheum Dis 62:332–336

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Sandmark H, Hogstedt C, Lewold S, Vingard E (1999) Osteoarthrosis of the knee in men and women in association with overweight, smoking, and hormone therapy. Ann Rheum Dis 58:151–155

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Von Muhlen D, Morton D, Von Muhlen CA, Barrett-Connor E (2002) Postmenopausal estrogen and increased risk of clinical osteoarthritis at the hip, hand, and knee in older women. J Womens Health Gend Based Med 11:511–518

    Article  Google Scholar 

  13. Le Bail J, Liagre B, Vergne P, Bertin P, Beneytout J, Habrioux G (2001) Aromatase in synovial cells from postmenopausal women. Steroids 66:749–757

    Article  PubMed  Google Scholar 

  14. Ham KD, Loeser RF, Lindgren BR, Carlson CS (2002) Effects of long-term estrogen replacement therapy on osteoarthritis severity in cynomolgus monkeys. Arthritis Rheum 46:1956–1964

    Article  PubMed  CAS  Google Scholar 

  15. Fernihough JK, Richmond RS, Carlson CS, Cherpes T, Holly JM, Loeser RF (1999) Estrogen replacement therapy modulation of the insulin-like growth factor system in monkey knee joints. Arthritis Rheum 42:2103–2111

    Article  PubMed  CAS  Google Scholar 

  16. Yaeger PC, Masi TL, De Ortiz JL, Binette F, Tubo R, McPherson JM (1997) Synergistic action of transforming growth factor-beta and insulin-like growth factor-I induces expression of type II collagen and aggrecan genes in adult human articular chondrocytes. Exp Cell Res 237:318–325

    Article  PubMed  CAS  Google Scholar 

  17. Renard E, Poree B, Chadjichristos C, Kypriotou M, Maneix L, Bigot N, Legendre F, Ollitrault D, De Crombrugghe B, Mallein-Gerin F et al (2012) Sox9/Sox6 and Sp1 are involved in the insulin-like growth factor-I-mediated upregulation of human type II collagen gene expression in articular chondrocytes. J Mol Med (Berlin, Germany) 90:649–666

    Article  CAS  Google Scholar 

  18. Saggese G, Federico G, Cinquanta L (1993) In vitro effects of growth hormone and other hormones on chondrocytes and osteoblast-like cells. Acta Paediatr (Oslo, Norway) 82(Suppl 391):54–59

    Article  Google Scholar 

  19. Dayani N, Corvol MT, Robel P, Eychenne B, Moncharmont B, Tsagris L, Rappaport R (1988) Estrogen receptors in cultured rabbit articular chondrocytes: influence of age. J Steroid Biochem 31:351–356

    Article  PubMed  CAS  Google Scholar 

  20. Ushiyama T, Ueyama H, Inoue K, Ohkubo I, Hukuda S (1999) Expression of genes for estrogen receptors alpha and beta in human articular chondrocytes. Osteoarthritis Cartilage 7:560–566

    Article  PubMed  CAS  Google Scholar 

  21. Sniekers YH, Van Osch GJ, Ederveen AG, Inzunza J, Gustafsson JA, Van Leeuwen JP, Weinans H (2009) Development of osteoarthritic features in estrogen receptor knockout mice. Osteoarthritis Cartilage 17:1356–1361

    Article  PubMed  CAS  Google Scholar 

  22. O'Lone R, Frith MC, Karlsson EK, Hansen U (2004) Genomic targets of nuclear estrogen receptors. Mol Endocrinol (Baltimore, Md) 18:1859–1875

    Article  Google Scholar 

  23. Galien R, Garcia T (1997) Estrogen receptor impairs interleukin-6 expression by preventing protein binding on the NF-kappaB site. Nucleic Acids Res 25:2424–2429

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Li D, Mitchell D, Luo J, Yi Z, Cho SG, Guo J, Li X, Ning G, Wu X, Liu M (2007) Estrogen regulates KiSS1 gene expression through estrogen receptor alpha and SP protein complexes. Endocrinology 148:4821–4828

    Article  PubMed  CAS  Google Scholar 

  25. Flouriot G, Brand H, Denger S, Metivier R, Kos M, Reid G, Sonntag-Buck V, Gannon F (2000) Identification of a new isoform of the human estrogen receptor-alpha (hER-alpha) that is encoded by distinct transcripts and that is able to repress hER-alpha activation function 1. EMBO J 19:4688–4700

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Denger S, Reid G, Kos M, Flouriot G, Parsch D, Brand H, Korach KS, Sonntag-Buck V, Gannon F (2001) ERalpha gene expression in human primary osteoblasts: evidence for the expression of two receptor proteins. Mol Endocrinol (Baltimore, Md) 15:2064–2077

    CAS  Google Scholar 

  27. Maneix L, Beauchef G, Servent A, Wegrowski Y, Maquart FX, Boujrad N, Flouriot G, Pujol JP, Boumediene K, Galera P et al (2008) 17Beta-oestradiol up-regulates the expression of a functional UDP-glucose dehydrogenase in articular chondrocytes: comparison with effects of cytokines and growth factors. Rheumatology (Oxford, England) 47:281–288

    Article  CAS  Google Scholar 

  28. Chadjichristos C, Ghayor C, Kypriotou M, Martin G, Renard E, Ala-Kokko L, Suske G, De Crombrugghe B, Pujol JP, Galera P (2003) Sp1 and Sp3 transcription factors mediate interleukin-1 beta down-regulation of human type II collagen gene expression in articular chondrocytes. J Biol Chem 278:39762–39772

    Article  PubMed  CAS  Google Scholar 

  29. Andrews NC, Faller DV (1991) A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res 19:2499

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Maor S, Mayer D, Yarden RI, Lee AV, Sarfstein R, Werner H, Papa MZ (2006) Estrogen receptor regulates insulin-like growth factor-I receptor gene expression in breast tumor cells: involvement of transcription factor Sp1. J Endocrinol 191:605–612

    Article  PubMed  CAS  Google Scholar 

  31. Marino M, Galluzzo P, Ascenzi P (2006) Estrogen signaling multiple pathways to impact gene transcription. Curr Genomics 7:497–508

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Porter W, Saville B, Hoivik D, Safe S (1997) Functional synergy between the transcription factor Sp1 and the estrogen receptor. Mol Endocrinol (Baltimore, Md) 11:1569–1580

    Article  CAS  Google Scholar 

  33. Owen GI, Richer JK, Tung L, Takimoto G, Horwitz KB (1998) Progesterone regulates transcription of the p21(WAF1) cyclin-dependent kinase inhibitor gene through Sp1 and CBP/p300. J Biol Chem 273:10696–10701

    Article  PubMed  CAS  Google Scholar 

  34. Lu S, Jenster G, Epner DE (2000) Androgen induction of cyclin-dependent kinase inhibitor p21 gene: role of androgen receptor and transcription factor Sp1 complex. Mol Endocrinol (Baltimore, Md) 14:753–760

    Article  CAS  Google Scholar 

  35. Kim K, Thu N, Saville B, Safe S (2003) Domains of estrogen receptor alpha (ERalpha) required for ERalpha/Sp1-mediated activation of GC-rich promoters by estrogens and antiestrogens in breast cancer cells. Mol Endocrinol (Baltimore, Md) 17:804–817

    Article  CAS  Google Scholar 

  36. Chadjichristos C, Ghayor C, Herrouin JF, Ala-Kokko L, Suske G, Pujol JP, Galera P (2002) Down-regulation of human type II collagen gene expression by transforming growth factor-beta 1 (TGF-beta 1) in articular chondrocytes involves SP3/SP1 ratio. J Biol Chem 277:43903–43917

    Article  PubMed  CAS  Google Scholar 

  37. Stoner M, Wang F, Wormke M, Nguyen T, Samudio I, Vyhlidal C, Marme D, Finkenzeller G, Safe S (2000) Inhibition of vascular endothelial growth factor expression in HEC1A endometrial cancer cells through interactions of estrogen receptor alpha and Sp3 proteins. J Biol Chem 275:22769–22779

    Article  PubMed  CAS  Google Scholar 

  38. Schultz JR, Petz LN, Nardulli AM (2003) Estrogen receptor alpha and Sp1 regulate progesterone receptor gene expression. Mol Cell Endocrinol 201:165–175

    Article  PubMed  CAS  Google Scholar 

  39. Higgins KJ, Liu S, Abdelrahim M, Vanderlaag K, Liu X, Porter W, Metz R, Safe S (2008) Vascular endothelial growth factor receptor-2 expression is down-regulated by 17beta-estradiol in MCF-7 breast cancer cells by estrogen receptor alpha/Sp proteins. Mol Endocrinol (Baltimore, Md) 22:388–402

    Article  CAS  PubMed Central  Google Scholar 

  40. Kypriotou M, Fossard-Demoor M, Chadjichristos C, Ghayor C, De Crombrugghe B, Pujol JP, Galera P (2003) SOX9 exerts a bifunctional effect on type II collagen gene (COL2A1) expression in chondrocytes depending on the differentiation state. DNA Cell Biol 22:119–129

    Article  PubMed  CAS  Google Scholar 

  41. Bi W, Deng JM, Zhang Z, Behringer RR, De Crombrugghe B (1999) Sox9 is required for cartilage formation. Nat Genet 22:85–89

    Article  PubMed  CAS  Google Scholar 

  42. Lafont JE, Talma S, Murphy CL (2007) Hypoxia-inducible factor 2alpha is essential for hypoxic induction of the human articular chondrocyte phenotype. Arthritis Rheum 56:3297–3306

    Article  PubMed  CAS  Google Scholar 

  43. Hattori T, Muller C, Gebhard S, Bauer E, Pausch F, Schlund B, Bosl MR, Hess A, Surmann-Schmitt C, Von der Mark H et al (2010) SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification. Development (Cambridge, England) 137:901–911

    Article  CAS  Google Scholar 

  44. Savagner P, Krebsbach PH, Hatano O, Miyashita T, Liebman J, Yamada Y (1995) Collagen II promoter and enhancer interact synergistically through Sp1 and distinct nuclear factors. DNA Cell Biol 14:501–510

    Article  PubMed  CAS  Google Scholar 

  45. Leung KK, Ng LJ, Ho KK, Tam PP, Cheah KS (1998) Different cis-regulatory DNA elements mediate developmental stage- and tissue-specific expression of the human COL2A1 gene in transgenic mice. J Cell Biol 141:1291–1300

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Webb P, Nguyen P, Shinsako J, Anderson C, Feng W, Nguyen MP, Chen D, Huang SM, Subramanian S, McKinerney E et al (1998) Estrogen receptor activation function 1 works by binding p160 coactivator proteins. Mol Endocrinol (Baltimore, Md) 12:1605–1618

    Article  CAS  Google Scholar 

  47. Kobayashi Y, Kitamoto T, Masuhiro Y, Watanabe M, Kase T, Metzger D, Yanagisawa J, Kato S (2000) p300 mediates functional synergism between AF-1 and AF-2 of estrogen receptor alpha and beta by interacting directly with the N-terminal A/B domains. J Biol Chem 275:15645–15651

    Article  PubMed  CAS  Google Scholar 

  48. Kim MY, Hsiao SJ, Kraus WL (2001) A role for coactivators and histone acetylation in estrogen receptor alpha-mediated transcription initiation. EMBO J 20:6084–6094

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Tsuda M, Takahashi S, Takahashi Y, Asahara H (2003) Transcriptional co-activators CREB-binding protein and p300 regulate chondrocyte-specific gene expression via association with Sox9. J Biol Chem 278:27224–27229

    Article  PubMed  CAS  Google Scholar 

  50. Furumatsu T, Tsuda M, Yoshida K, Taniguchi N, Ito T, Hashimoto M, Ito T, Asahara H (2005) Sox9 and p300 cooperatively regulate chromatin-mediated transcription. J Biol Chem 280:35203–35208

    Article  PubMed  CAS  Google Scholar 

  51. Achari Y, Lu T, Katzenellenbogen BS, Hart DA (2009) Distinct roles for AF-1 and -2 of ER-alpha in regulation of MMP-13 promoter activity. Biochim Biophys Acta 1792:211–220

    Article  PubMed  CAS  Google Scholar 

  52. Billon-Gales A, Fontaine C, Filipe C, Douin-Echinard V, Fouque MJ, Flouriot G, Gourdy P, Lenfant F, Laurell H, Krust A et al (2009) The transactivating function 1 of estrogen receptor alpha is dispensable for the vasculoprotective actions of 17beta-estradiol. Proc Natl Acad Sci U S A 106:2053–2058

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Tzukerman MT, Esty A, Santiso-Mere D, Danielian P, Parker MG, Stein RB, Pike JW, McDonnell DP (1994) Human estrogen receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intramolecular regions. Mol Endocrinol (Baltimore, Md) 8:21–30

    CAS  Google Scholar 

  54. Berry M, Metzger D, Chambon P (1990) Role of the two activating domains of the oestrogen receptor in the cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4-hydroxytamoxifen. EMBO J 9:2811–2818

    PubMed  CAS  PubMed Central  Google Scholar 

  55. Jiang HP, Teng RY, Wang Q, Zhang X, Wang HH, Cao J, Teng LS (2008) Estrogen receptor alpha variant ERalpha46 mediates growth inhibition and apoptosis of human HT-29 colon adenocarcinoma cells in the presence of 17beta-oestradiol. Chin Med J 121:1025–1031

    PubMed  CAS  Google Scholar 

  56. Webb P, Nguyen P, Valentine C, Lopez GN, Kwok GR, McInerney E, Katzenellenbogen BS, Enmark E, Gustafsson JA, Nilsson S et al (1999) The estrogen receptor enhances AP-1 activity by two distinct mechanisms with different requirements for receptor transactivation functions. Mol Endocrinol (Baltimore, Md) 13:1672–1685

    Article  CAS  Google Scholar 

  57. Takeuchi S, Mukai N, Tateishi T, Miyakawa S (2007) Production of sex steroid hormones from DHEA in articular chondrocyte of rats. Am J Physiol Endocrinol Metab 293:E410–E415

    Article  PubMed  CAS  Google Scholar 

  58. Richette P, Laborde K, Boutron C, Bardin T, Corvol MT, Savouret JF (2007) Correlation between serum and synovial fluid estrogen concentrations: comment on the article by Sowers et al. Arthritis Rheum 56:698, author reply 698–699

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the French Ministry of Research and Technology and is a part of a more global program on tissue engineering of articular cartilage of the laboratory supported by the French Agency of Research (ANR: Agence Nationale de la Recherche, Tecsan, PROMOCART) and the Regional Council of Lower-Normandy.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Galéra.

Additional information

Safa Moslemi and Philippe Galéra contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 373 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maneix, L., Servent, A., Porée, B. et al. Up-regulation of type II collagen gene by 17β-estradiol in articular chondrocytes involves Sp1/3, Sox-9, and estrogen receptor α. J Mol Med 92, 1179–1200 (2014). https://doi.org/10.1007/s00109-014-1195-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-014-1195-5

Keywords

Navigation