Skip to main content
Log in

Targeting the hypoxia-adenosinergic signaling pathway to improve the adoptive immunotherapy of cancer

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The recent approval by the FDA of cancer vaccines and drugs that blockade immunological negative regulators has further enhanced interest in promising approaches of the immunotherapy of cancer. However, the disappointingly short life extension has also underscored the need to better understand the mechanisms that prevent tumor rejection and survival even after the blockade of immunological negative regulators. Here, we describe the implications of the “metabolism-based” immunosuppressive mechanism, where the local tissue hypoxia-driven accumulation of extracellular adenosine triggers suppression via A2 adenosine receptors on the surface of activated immune cells. This molecular pathway is of critical importance in mechanisms of immunosuppression in inflamed and cancerous tissue microenvironments. The protection of tumors by tumor-generated extracellular adenosine and A2 adenosine receptors could be the misguided application of the normal tissue-protecting mechanism that limits excessive collateral damage to vital organs during the anti-pathogen immune response. The overview of the current state of the art regarding the immunosuppressive effects of extracellular adenosine is followed by a historical perspective of studies focused on the elucidation of the physiological negative regulators that protect tissues of vital organs from excessive collateral damage, but, as a trade-off, may also weaken the anti-pathogen effector functions and negate the attempts of anti-tumor immune cells to destroy cancerous cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Vanneman M, Dranoff G (2012) Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 12:237–251

    Article  PubMed  CAS  Google Scholar 

  2. Srivastava PK (2006) Therapeutic cancer vaccines. Curr Opin Immunol 18:201–205

    Article  PubMed  CAS  Google Scholar 

  3. Callahan MK, Wolchok JD, Allison JP (2010) Anti-CTLA-4 antibody therapy: immune monitoring during clinical development of a novel immunotherapy. Semin Oncol 37:473–484

    Article  PubMed  CAS  Google Scholar 

  4. Sharma P, Wagner K, Wolchok JD, Allison JP (2011) Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat Rev Cancer 11:805–812

    Article  PubMed  CAS  Google Scholar 

  5. Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12:269–281

    Article  PubMed  CAS  Google Scholar 

  6. Klebanoff CA, Gattinoni L, Restifo NP (2012) Sorting through subsets: which T-cell populations mediate highly effective adoptive immunotherapy? J Immunother 35:651–660

    Article  PubMed  CAS  Google Scholar 

  7. Liddy N, Bossi G, Adams KJ, Lissina A, Mahon TM, Hassan NJ, Gavarret J, Bianchi FC, Pumphrey NJ, Ladell K et al (2012) Monoclonal TCR-redirected tumor cell killing. Nat Med 18:980–987

    Article  PubMed  CAS  Google Scholar 

  8. Dubensky TW Jr, Reed SG (2010) Adjuvants for cancer vaccines. Semin Immunol 22:155–161

    Article  PubMed  CAS  Google Scholar 

  9. Noman MZ, Buart S, Van Pelt J, Richon C, Hasmim M, Leleu N, Suchorska WM, Jalil A, Lecluse Y, El Hage F et al (2009) The cooperative induction of hypoxia-inducible factor-1 alpha and STAT3 during hypoxia induced an impairment of tumor susceptibility to CTL-mediated cell lysis. J Immunol 182:3510–3521

    Article  PubMed  CAS  Google Scholar 

  10. Hellstrom I, Hellstrom KE, Pierce GE, Yang JP (1968) Cellular and humoral immunity to different types of human neoplasms. Nature 220:1352–1354

    Article  PubMed  CAS  Google Scholar 

  11. Quezada SA, Peggs KS, Simpson TR, Allison JP (2011) Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication. Immunol Rev 241:104–118

    Article  PubMed  CAS  Google Scholar 

  12. Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis E, Pisarev V, Sherman S, Sporn MB, Gabrilovich D (2011) Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest 121:4015–4029

    Article  PubMed  CAS  Google Scholar 

  13. Kerkar SP, Restifo NP (2012) Cellular constituents of immune escape within the tumor microenvironment. Cancer Res 72:3125–3130

    Article  PubMed  CAS  Google Scholar 

  14. Mellor AL, Chandler P, Lee GK, Johnson T, Keskin DB, Lee J, Munn DH (2002) Indoleamine 2,3-dioxygenase, immunosuppression and pregnancy. J Reprod Immunol 57:143–150

    Article  PubMed  CAS  Google Scholar 

  15. Sitkovsky MV et al (2004) Physiological control of immune response and inflammatory tissue damage by hypoxia inducible factors and adenosine A2A receptors. Annu Rev Immunol 22:2101–2126

    Article  CAS  Google Scholar 

  16. Sitkovsky M, Lukashev D (2005) Regulation of immune cells by local-tissue oxygen tension: HIF1alpha and adenosine receptors. Nat Rev Immunol 5:712–721

    Article  PubMed  CAS  Google Scholar 

  17. Sitkovsky MV (2009) T regulatory cells: hypoxia-adenosinergic suppression and re-direction of the immune response. Trends Immunol 30:102–108

    Article  PubMed  CAS  Google Scholar 

  18. Sitkovsky MV, Paul WE (1988) Immunology. Global or directed exocytosis? Nature 332:306–307

    Article  PubMed  CAS  Google Scholar 

  19. Kojima H, Eshima K, Takayama H, Sitkovsky M (1997) The LFA-1 dependent lysis of Fas+ (CD95/Apo-1) innocent bystanders by antigen specific CD8+ cytotoxic T lymphocytes. J Immunol 159:2728–2734

    PubMed  CAS  Google Scholar 

  20. Sitkovsky MV, Ohta A (2005) The ‘danger’ sensors that STOP the immune response: the A2 adenosine receptors? Trends Immunol 26:299–304

    Article  PubMed  CAS  Google Scholar 

  21. Takayama H, Trenn G, Sitkovsky MV (1988) Locus of inhibitory action of cAMP-dependent protein kinase in the antigen-receptor triggered cytotoxic T-lymphocyte activation pathway. J Biol Chem 263:2330–2336

    PubMed  CAS  Google Scholar 

  22. Takayama H, Sitkovsky MV (1988) Potential use of antagonists of cAMP-dependent protein kinase to block inhibition and modulate T-cell receptor-triggered activation of cytotoxic T-lymphocytes. J Pharm Sci 78:8–10

    Article  Google Scholar 

  23. Sittler T, Zhou J, Park J, Yuen NK, Sarantopoulos S, Mollick J, Salgia R, Giobbie-Hurder A, Dranoff G, Hodi FS (2008) Concerted potent humoral immune responses to autoantigens are associated with tumor destruction and favorable clinical outcomes without autoimmunity. Clin Cancer Res 14:3896–3905

    Article  PubMed  CAS  Google Scholar 

  24. Lefkowitz RJ (2007) Seven transmembrane receptors: something old, something new. Acta Physiol (Oxf) 190:9–19

    Article  CAS  Google Scholar 

  25. Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Muller CE (2011) International union of basic and clinical pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—an update. Pharmacol Rev 63:1–34

    Article  PubMed  CAS  Google Scholar 

  26. Huang S, Koshiba M, Apasov S, Sitkovsky M (1997) Role of A2a adenosine receptor-mediated signaling in inhibition of T cell activation and expansion. Blood 90:1600–1610

    PubMed  CAS  Google Scholar 

  27. Koshiba M, Kojima H, Huang S, Apasov S, Sitkovsky MV (1997) Memory of extracellular adenosine/A2a purinergic receptor-mediated signalling in murine T cells. J Biol Chem 272:25881–25889

    Article  PubMed  CAS  Google Scholar 

  28. Apasov SG, Koshiba M, Chused TM, Sitkovsky MV (1997) Effects of extracellular ATP and adenosine on different thymocyte subsets: possible role of ATP-gated channels and Gprotein-coupled purinergic receptors. J Immunol 158:5095–5105

    PubMed  CAS  Google Scholar 

  29. Armstrong JM, Chen JF, Schwarzschild MA, Apasov S, Smith PT, Caldwell C, Chen P, Figler H, Sullivan G, Fink S et al (2001) Gene dose effect reveals no Gs-coupled A2A adenosine receptor reserve in murine T-lymphocytes: studies of cells from A2A-receptor-gene-deficient mice. Biochem J 354:123–130

    Article  PubMed  CAS  Google Scholar 

  30. Sitkovsky MV (2003) Use of the A(2A) adenosine receptor as a physiological immunosuppressor and to engineer inflammation in vivo. Biochem Pharmacol 65:493–501

    Article  PubMed  CAS  Google Scholar 

  31. Fredholm BB, Chern Y, Franco R, Sitkovsky M (2007) Aspects of the general biology of adenosine A2A signaling. Prog Neurobiol 83:263–276

    Article  PubMed  CAS  Google Scholar 

  32. Liqun Y, Huang Z, Mariani J, Wang Y, Moskowitz M, Chen J-F (2004) Selective inactivation or reconstitution of adenosine A2A receptors in bone marrow cells reveals their significant contribution to the development of ischemic brain injury. Nat Med 10:1081–1087

    Article  CAS  Google Scholar 

  33. Yang JN, Chen JF, Fredholm BB (2009) Physiological roles of A1 and A2A adenosine receptors in regulating heart rate, body temperature, and locomotion as revealed using knockout mice and caffeine. Am J Physiol Heart Circ Physiol 296:H1141–H1149

    Article  PubMed  CAS  Google Scholar 

  34. Fredholm BB (2011) Notes on the history of caffeine use. Handb Exp Pharmacol 200:1–9

    Article  PubMed  Google Scholar 

  35. Schwarzschild MA, Chen JF, Ascherio A (2002) Caffeinated clues and the promise of adenosine A(2A) antagonists in PD. Neurology 58:1154–1160

    Article  PubMed  CAS  Google Scholar 

  36. Kachroo A, Schwarzschild MA (2012) Adenosine A2A receptor gene disruption protects in an alpha-synuclein model of Parkinson’s disease. Ann Neurol 71:278–282

    Article  PubMed  CAS  Google Scholar 

  37. Raskovalova T, Huang X, Sitkovsky M, Zacharia LC, Jackson EK, Gorelik E (2005) Gs protein-coupled adenosine receptor signaling and lytic function of activated NK cells. J Immunol 175:4383–4391

    PubMed  CAS  Google Scholar 

  38. Lappas CM, Day YJ, Marshall MA, Engelhard VH, Linden J (2006) Adenosine A2A receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation. J Exp Med 203:2639–2648

    Article  PubMed  CAS  Google Scholar 

  39. Nowak M, Lynch L, Yue S, Ohta A, Sitkovsky M, Balk SP, Exley MA (2010) The A2aR adenosine receptor controls cytokine production in iNKT cells. Eur J Immunol 40:682–687

    Article  PubMed  CAS  Google Scholar 

  40. Link AA, Kino T, Worth JA, McGuire JL, Crane ML, Chrousos GP, Wilder RL, Elenkov IJ (2000) Ligand-activation of the adenosine A2a receptors inhibits IL-12 production by human monocytes. J Immunol 164:436–442

    PubMed  CAS  Google Scholar 

  41. Panther E, Corinti S, Idzko M, Herouy Y, Napp M, La Sala A, Girolomoni G, Norgauer J (2003) Adenosine affects expression of membrane molecules, cytokine and chemokine release, and the T-cell stimulatory capacity of human dendritic cells. Blood 101:3985–3990

    Article  PubMed  CAS  Google Scholar 

  42. Cronstein B, Daguma L, Nichols D, Hutchison A, Williams M (1990) The adenosine/neutrophil paradox resolved: human neutrophils posess both A1 and A2 receptors that promote chemotaxis and inhibit O2 generation, respectively. J Clin Invest 85:1150–1157

    Article  PubMed  CAS  Google Scholar 

  43. Ohta A, Madasu M, Kini R, Subramanian M, Goel N, Sitkovsky M (2009) A2A adenosine receptor may allow expansion of T cells lacking effector functions in extracellular adenosine-rich microenvironments. J Immunol 183:5487–5493

    Article  PubMed  CAS  Google Scholar 

  44. Lappas CM, Rieger JM, Linden J (2005) A2A adenosine receptor induction inhibits IFN-gamma production in murine CD4+ T cells. J Immunol 174:1073–1080

    PubMed  CAS  Google Scholar 

  45. Raskovalova T, Lokshin A, Huang X, Su Y, Mandic M, Zarour HM, Jackson EK, Gorelik E (2007) Inhibition of cytokine production and cytotoxic activity of human antimelanoma specific CD8+ and CD4+ T lymphocytes by adenosine-protein kinase A type I signaling. Cancer Res 67:5949–5956

    Article  PubMed  CAS  Google Scholar 

  46. Linnemann C, Schildberg FA, Schurich A, Diehl L, Hegenbarth SI, Endl E, Lacher S, Müller CE, Frey J, Simeoni L et al (2009) Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signaling. Immunology 128:e728–e737

    Article  PubMed  Google Scholar 

  47. Vang T, Torgersen KM, Sundvold V, Saxena M, Levy FO, Skalhegg BS, Hansson V, Mustelin T, Tasken K (2001) Activation of the COOH-terminal Src kinase (Csk) by cAMP-dependent protein kinase inhibits signaling through the T cell receptor. J Exp Med 193:497–507

    Article  PubMed  CAS  Google Scholar 

  48. Zarek PE, Huang CT, Lutz ER, Kowalski J, Horton MR, Linden J, Drake CG, Powell JD (2008) A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood 111:251–259

    Article  PubMed  CAS  Google Scholar 

  49. Ohta A, Kini R, Subramanian M, Madasu M, Sitkovsky M (2012) The development and immunosuppressive functions of CD4(+) CD25(+) FoxP3(+) regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front Immunol 3:190

    PubMed  Google Scholar 

  50. Fredholm BB (2010) Adenosine receptors as drug targets. Exp Cell Res 316:1284–1288

    Article  PubMed  CAS  Google Scholar 

  51. Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264

    Article  PubMed  CAS  Google Scholar 

  52. Linden J (2001) Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection. Annu Rev Pharmacol Toxicol 41:775–787

    Article  PubMed  CAS  Google Scholar 

  53. Okusa MD, Linden J, Huang L, Rosin DL, Smith DF, Sullivan G (2001) Enhanced protection from renal ischemia-reperfusion [correction of ischemia:reperfusion] injury with A(2A)-adenosine receptor activation and PDE 4 inhibition. Kidney Int 59:2114–2125

    PubMed  CAS  Google Scholar 

  54. Day YJ, Huang L, McDuffie MJ, Rosin DL, Ye H, Chen JF, Schwarzschild MA, Fink JS, Linden J, Okusa MD (2003) Renal protection from ischemia mediated by A2A adenosine receptors on bone marrow-derived cells. J Clin Invest 112:883–891

    PubMed  CAS  Google Scholar 

  55. Cassada DC, Tribble CG, Long SM, Kaza AK, Linden J, Rieger JM, Rosin D, Kron IL, Kern JA (2002) Adenosine A2A agonist reduces paralysis after spinal cord ischemia: correlation with A2A receptor expression on motor neurons. Ann Thorac Surg 74:846–849

    Article  PubMed  Google Scholar 

  56. Li L, Huang L, Ye H, Song SP, Bajwa A, Lee SJ, Moser EK, Jaworska K, Kinsey GR, Day YJ et al (2012) Dendritic cells tolerized with adenosine A2AR agonist attenuate acute kidney injury. J Clin Invest 122:3931–3942

    Article  PubMed  CAS  Google Scholar 

  57. Cronstein BN, Eberle MA, Gruber HE, Levin RI (1991) Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells. Proc Natl Acad Sci U S A 88:2441–2445

    Article  PubMed  CAS  Google Scholar 

  58. Cronstein BN, Naime D, Ostad E (1993) The antiinflammatory mechanism of methotrexate. Increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation. J Clin Invest 92:2675–2682

    Article  PubMed  CAS  Google Scholar 

  59. Chan SL, Delano D, Montesinos MC, Pillinger ML, Reiss AB, Cronstein BN (2002) Methotrexate-induced hepatic fibrosis: adenosine A2A receptor is responsible for hepatic collagen production and protective effects of caffeine. Arthritis Rheum 46(Suppl):1463

    Google Scholar 

  60. Montesinos MC, Desai A, Delano D, Chen JF, Fink JS, Jacobson MA, Cronstein BN (2003) Adenosine A2A or A3 receptors are required for inhibition of inflammation by methotrexate and its analog MX-68. Arthritis Rheum 48:240–247

    Article  PubMed  CAS  Google Scholar 

  61. Montesinos MC, Gadangi P, Longaker M, Sung J, Levine J, Nilsen D, Reibman J, Li M, Hiang CK, Hirschhorn R et al (1997) Wound healing is accelerated by agonists of A2 (G alpha s-linked) receptors. J Exp Med 186:1615–1620

    Article  PubMed  CAS  Google Scholar 

  62. Feoktistov I, Biaggioni I, Cronstein BN (2009) Adenosine receptors in wound healing, fibrosis and angiogenesis. Handb Exp Pharmacol 193:383–397

    Article  PubMed  CAS  Google Scholar 

  63. Colgan SP, Eltzschig HK, Eckle T, Thompson LF (2006) Physiological roles for ecto-5′-nucleotidase (CD73). Purinergic Signal 2:351–360

    Article  PubMed  CAS  Google Scholar 

  64. Mizumoto N, Kumamoto T, Robson SC, Sevigny J, Matsue H, Enjyoji K, Takashima A (2002) CD39 is the dominant Langerhans cell-associated ecto-NTPDase: modulatory roles in inflammation and immune responsiveness. Nat Med 8:358–365

    Article  PubMed  CAS  Google Scholar 

  65. Friedman DJ, Kunzli BM, A-Rahim YI, Sevigny J, Berberat PO, Enjyoji K, Csizmadia E, Friess H, Robson SC (2009) From the cover: CD39 deletion exacerbates experimental murine colitis and human polymorphisms increase susceptibility to inflammatory bowel disease. Proc Natl Acad Sci U S A 106:16788–16793

    Article  PubMed  CAS  Google Scholar 

  66. Sun X, Wu Y, Gao W, Enjyoji K, Csizmadia E, Muller CE, Murakami T, Robson SC (2010) CD39/ENTPD1 expression by CD4 + Foxp3+ regulatory T cells promotes hepatic metastatic tumor growth in mice. Gastroenterology 139:1030–1040

    Article  PubMed  CAS  Google Scholar 

  67. Decking UK, Schlieper G, Kroll K, Schrader J (1997) Hypoxia-induced inhibition of adenosine kinase potentiates cardiac adenosine release. Circ Res 81:154–164

    Article  PubMed  CAS  Google Scholar 

  68. Morote-Garcia JC, Rosenberger P, Kuhlicke J, Eltzschig HK (2008) HIF-1-dependent repression of adenosine kinase attenuates hypoxia-induced vascular leak. Blood 111:5571–5580

    Article  PubMed  CAS  Google Scholar 

  69. Sitkovsky MV (2008) Damage control by hypoxia-inhibited AK. Blood 111:5424–5425

    Article  PubMed  CAS  Google Scholar 

  70. Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920

    Article  PubMed  CAS  Google Scholar 

  71. Lukashev D, Ohta A, Apasov S, Chen JF, Sitkovsky M (2004) Cutting edge: physiologic attenuation of proinflammatory transcription by the Gs protein-coupled A2A adenosine receptor in vivo. J Immunol 173:21–24

    PubMed  CAS  Google Scholar 

  72. Thiel M, Chouker A, Ohta A, Jackson E, Caldwell C, Smith P, Lukashev D, Bittmann I, Sitkovsky MV (2005) Oxygenation inhibits the physiological tissue-protecting mechanism and thereby exacerbates acute inflammatory lung injury. PLoS Biol 3:e174

    Article  PubMed  CAS  Google Scholar 

  73. Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK, Huang X, Caldwell S, Liu K, Smith P et al (2006) A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci U S A 103:13132–13137

    Article  PubMed  CAS  Google Scholar 

  74. Sitkovsky M, Lukashev D, Deaglio S, Dwyer K, Robson S, Ohta A (2008) Adenosine A2A receptor antagonists: blockade of adenosinergic effects and T regulatory cells. Br J Pharmacol 153:S457–S464

    Article  PubMed  CAS  Google Scholar 

  75. Sitkovsky MV, Kjaergaard J, Lukashev D, Ohta A (2008) Hypoxia-adenosinergic immunosuppression: tumor protection by T regulatory cells and cancerous tissue hypoxia. Clin Cancer Res 14:5947–5952

    Article  PubMed  CAS  Google Scholar 

  76. Stagg J, Divisekera U, McLaughlin N, Sharkey J, Pommey S, Denoyer D, Dwyer KM, Smyth MJ (2010) Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci U S A 107:1547–1552

    Article  PubMed  CAS  Google Scholar 

  77. Jin D, Fan J, Wang L, Thompson LF, Liu A, Daniel BJ, Shin T, Curiel TJ, Zhang B (2010) CD73 on tumor cells impairs antitumor T-cell responses: a novel mechanism of tumor-induced immune suppression. Cancer Res 70:2245–2255

    Article  PubMed  CAS  Google Scholar 

  78. Waickman AT, Alme A, Senaldi L, Zarek PE, Horton M, Powell JD (2012) Enhancement of tumor immunotherapy by deletion of the A2A adenosine receptor. Cancer Immunol Immunother 61:917–926

    Article  PubMed  CAS  Google Scholar 

  79. Zhang B (2010) CD73: a novel target for cancer immunotherapy. Cancer Res 70:6407–6411

    Article  PubMed  CAS  Google Scholar 

  80. Beavis PA, Stagg J, Darcy PK, Smyth MJ (2012) CD73: a potent suppressor of antitumor immune responses. Trends Immunol 33:231–237

    Article  PubMed  CAS  Google Scholar 

  81. Stagg J, Beavis PA, Divisekera U, Liu MC, Moller A, Darcy PK, Smyth MJ (2012) CD73-deficient mice are resistant to carcinogenesis. Cancer Res 72:2190–2196

    Article  PubMed  CAS  Google Scholar 

  82. Stagg J, Divisekera U, Duret H, Sparwasser T, Teng MW, Darcy PK, Smyth MJ (2011) CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis. Cancer Res 71:2892–2900

    Article  PubMed  CAS  Google Scholar 

  83. Blay J, White TD, Hoskin DW (1997) The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 57:2602–2605

    PubMed  CAS  Google Scholar 

  84. Hoskin DW, Reynolds T, Blay J (1994) Adenosine as a possible inhibitor of killer T-cell activation in the microenvironment of solid tumours. Int J Cancer 59:854–855

    Article  PubMed  CAS  Google Scholar 

  85. Hoskin DW, Butler JJ, Drapeau D, Haeryfar SM, Blay J (2002) Adenosine acts through an A3 receptor to prevent the induction of murine anti-CD3-activated killer T cells. Int J Cancer 99:386–395

    Article  PubMed  CAS  Google Scholar 

  86. Hoskin DW, Reynolds T, Blay J (1994) 2-Chloroadenosine inhibits the MHC-unrestricted cytolytic activity of anti-CD3-activated killer cells: evidence for the involvement of a non-A1/A2 cell-surface adenosine receptor. Cell Immunol 159:85–93

    Article  PubMed  CAS  Google Scholar 

  87. Koeppen M, Eckle T, Eltzschig HK (2011) Interplay of hypoxia and A2B adenosine receptors in tissue protection. Adv Pharmacol 61:145–186

    Article  PubMed  CAS  Google Scholar 

  88. Feoktistov I, Ryzhov S, Zhong H, Goldstein AE, Matafonov A, Zeng D, Biaggioni I (2004) Hypoxia modulates adenosine receptors in human endothelial and smooth muscle cells toward an A2B angiogenic phenotype. Hypertension 44:649–654

    Article  PubMed  CAS  Google Scholar 

  89. Kong T, Westerman KA, Faigle M, Eltzschig HK, Colgan SP (2006) HIF-dependent induction of adenosine A2B receptor in hypoxia. FASEB J 20:2242–2250

    Article  PubMed  CAS  Google Scholar 

  90. Hart ML, Grenz A, Gorzolla IC, Schittenhelm J, Dalton JH, Eltzschig HK (2011) Hypoxia-inducible factor-1α-dependent protection from intestinal ischemia/reperfusion injury involves ecto-5′-nucleotidase (CD73) and the A2B adenosine receptor. J Immunol 186:4367–4374

    Article  PubMed  CAS  Google Scholar 

  91. Ehrentraut H, Westrich JA, Eltzschig HK, Clambey ET (2012) Adora2b adenosine receptor engagement enhances regulatory T cell abundance during endotoxin-induced pulmonary inflammation. PLoS One 7:e32416

    Article  PubMed  CAS  Google Scholar 

  92. Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov OY, Blackburn MR, Biaggioni I, Carbone DP, Feoktistov I et al (2008) Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 112:1822–1831

    Article  PubMed  CAS  Google Scholar 

  93. Ryzhov S, Novitskiy SV, Zaynagetdinov R, Goldstein AE, Carbone DP, Biaggioni I, Dikov MM, Feoktistov I (2008) Host A(2B) adenosine receptors promote carcinoma growth. Neoplasia 10:987–995

    PubMed  CAS  Google Scholar 

  94. Cekic C, Sag D, Li Y, Theodorescu D, Strieter RM, Linden J (2012) Adenosine A2B receptor blockade slows growth of bladder and breast tumors. J Immunol 188:198–205

    Article  PubMed  CAS  Google Scholar 

  95. Ohta A, Kjaergaard J, Sharma S, Mohsin M, Goel N, Madasu M, Fradkov E, Sitkovsky M (2009) In vitro induction of T cells that are resistant to A2 adenosine receptor-mediated immunosuppression. Br J Pharmacol 156:297–306

    Article  PubMed  CAS  Google Scholar 

  96. Bai A, Higham E, Eisen HN, Wittrup KD, Chen J (2008) Rapid tolerization of virus-activated tumor-specific CD8+ T cells in prostate tumors of TRAMP mice. Proc Natl Acad Sci U S A 105:13003–13008

    Article  PubMed  CAS  Google Scholar 

  97. Drake CG, Doody AD, Mihalyo MA, Huang CT, Kelleher E, Ravi S, Hipkiss EL, Flies DB, Kennedy EP, Long M et al (2005) Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen. Cancer Cell 7:239–249

    Article  PubMed  CAS  Google Scholar 

  98. Pinna A (2009) Novel investigational adenosine A2A receptor antagonists for Parkinson’s disease. Expert Opin Investig Drugs 18:1619–1631

    Article  PubMed  CAS  Google Scholar 

  99. Lukashev D, Ohta A, Sitkovsky M (2007) Hypoxia-dependent anti-inflammatory pathways in protection of cancerous tissues. Cancer Metastasis Rev 26:273–279

    Article  PubMed  CAS  Google Scholar 

  100. Dayan F, Mazure NM, Brahimi-Horn MC, Pouyssegur J (2008) A dialogue between the hypoxia-inducible factor and the tumor microenvironment. Cancer Microenviron 1:53–68

    Article  PubMed  CAS  Google Scholar 

  101. Wang J, Yi J (2008) Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol Ther 7:1875–1884

    Article  PubMed  CAS  Google Scholar 

  102. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M et al (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–1265

    Article  PubMed  CAS  Google Scholar 

  103. Pouliot M, Fiset ME, Masse M, Naccache PH, Borgeat P (2002) Adenosine up-regulates cyclooxygenase-2 in human granulocytes: impact on the balance of eicosanoid generation. J Immunol 169:5279–5286

    PubMed  Google Scholar 

  104. Cadieux JS, Leclerc P, St-Onge M, Dussault AA, Laflamme C, Picard S, Ledent C, Borgeat P, Pouliot M (2005) Potentiation of neutrophil cyclooxygenase-2 by adenosine: an early anti-inflammatory signal. J Cell Sci 118:1437–1447

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by The National Institutes of Health (R01 CA112561 and R01 CA111985).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michail Sitkovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sitkovsky, M., Ohta, A. Targeting the hypoxia-adenosinergic signaling pathway to improve the adoptive immunotherapy of cancer. J Mol Med 91, 147–155 (2013). https://doi.org/10.1007/s00109-013-1001-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-013-1001-9

Keywords

Navigation