Skip to main content
Log in

Transcriptional control of adenosine signaling by hypoxia-inducible transcription factors during ischemic or inflammatory disease

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Inflammatory lesions, ischemic tissues, or solid tumors are characterized by the occurrence of severe tissue hypoxia within the diseased tissue. Subsequent stabilization of hypoxia-inducible transcription factors—particularly of hypoxia-inducible factor 1α (HIF1A)—results in significant alterations of gene expression of resident cells or inflammatory cells that have been recruited into such lesions. Interestingly, studies of hypoxia-induced changes of gene expression identified a transcriptional program that promotes extracellular adenosine signaling. Adenosine is a signaling molecule that functions through the activation of four distinct adenosine receptors—the ADORA1, ADORA2A, ADORA2B, and ADORA3 receptors. Extracellular adenosine is predominantly derived from the phosphohydrolysis of precursor nucleotides, such as adenosine triphosphate or adenosine monophosphate. HIF1A-elicited alterations in gene expression enhance the enzymatic capacity within inflamed tissues to produce extracellular adenosine. Moreover, hypoxia-elicited induction of adenosine receptors—particularly of ADORA2B—results in increased signal transduction. Functional studies in genetic models for HIF1A or adenosine receptors implicate this pathway in an endogenous feedback loop that dampens excessive inflammation and promotes injury resolution, while at the same time enhancing ischemia tolerance. Therefore, pharmacological strategies to enhance HIF-elicited adenosine production or to promote adenosine signaling through adenosine receptors are being investigated for the treatment of acute inflammatory or ischemic diseases characterized by tissue hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang G, Jiang B, Rue E, Semenza G (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. PNAS 92:5510–5514

    Article  PubMed  CAS  Google Scholar 

  2. Semenza GL, Roth PH, Fang HM, Wang GL (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269:23757–23763

    PubMed  CAS  Google Scholar 

  3. Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408

    Article  PubMed  CAS  Google Scholar 

  4. Semenza GL (2011) Oxygen sensing, homeostasis, and disease. N Engl J Med 365:537–547

    Article  PubMed  CAS  Google Scholar 

  5. Semenza GL (2007) Life with oxygen. Science 318:62–64

    Article  PubMed  CAS  Google Scholar 

  6. Eltzschig HK, Sitkovsky MV, Robson SC (2012) Purinergic signaling during Inflammation. N Engl J Med 367:2322–2333

    Google Scholar 

  7. Eltzschig HK, Eckle T (2011) Ischemia and reperfusion—from mechanism to translation. Nat Med 17:1391–1401

    Article  PubMed  CAS  Google Scholar 

  8. Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med 364:656–665

    Article  PubMed  CAS  Google Scholar 

  9. Taylor CT (2008) Interdependent roles for hypoxia inducible factor and nuclear factor-kappaB in hypoxic inflammation. J Physiol 586:4055–4059

    Article  PubMed  CAS  Google Scholar 

  10. Taylor CT, Colgan SP (2007) Hypoxia and gastrointestinal disease. J Mol Med 85:1295–1300

    Article  PubMed  Google Scholar 

  11. Tambuwala MM, Cummins EP, Lenihan CR, Kiss J, Stauch M, Scholz CC, Fraisl P, Lasitschka F, Mollenhauer M, Saunders SP et al (2010) Loss of prolyl hydroxylase-1 protects against colitis through reduced epithelial cell apoptosis and increased barrier function. Gastroenterology. doi:10.1053/j.gastro.2010.06.068

  12. Cummins EP, Taylor CT (2005) Hypoxia-responsive transcription factors. Pflugers Arch 450:363–371

    Google Scholar 

  13. Hart ML, Gorzolla IC, Schittenhelm J, Robson SC, Eltzschig HK (2010) SP1-dependent induction of CD39 facilitates hepatic ischemic preconditioning. J Immunol 184:4017–4024

    Article  PubMed  CAS  Google Scholar 

  14. Eltzschig HK, Kohler D, Eckle T, Kong T, Robson SC, Colgan SP (2009) Central role of Sp1-regulated CD39 in hypoxia/ischemia protection. Blood 113:224–232

    Article  PubMed  CAS  Google Scholar 

  15. Eckle T, Hartmann K, Bonney S, Reithel S, Mittelbronn M, Walker LA, Lowes BD, Han J, Borchers CH, Buttrick PM et al (2012) Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nat Med 18:774–782

    Article  PubMed  CAS  Google Scholar 

  16. Eckle T, Kohler D, Lehmann R, El Kasmi KC, Eltzschig HK (2008) Hypoxia-inducible factor-1 is central to cardioprotection: a new paradigm for ischemic preconditioning. Circulation 118:166–175

    Article  PubMed  CAS  Google Scholar 

  17. Grenz A, Bauerle JD, Dalton JH, Ridyard D, Badulak A, Tak E, McNamee EN, Clambey E, Moldovan R, Reyes G et al (2012) Equilibrative nucleoside transporter 1 (ENT1) regulates postischemic blood flow during acute kidney injury in mice. J Clin Invest 122:693–710

    Article  PubMed  CAS  Google Scholar 

  18. Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17:796–808

    Article  PubMed  CAS  Google Scholar 

  19. Eltzschig HK, Collard CD (2004) Vascular ischaemia and reperfusion injury. Br Med Bull 70:71–86

    Article  PubMed  CAS  Google Scholar 

  20. Arteel GE, Thurman RG, Yates JM, Raleigh JA (1995) Evidence that hypoxia markers detect oxygen gradients in liver: pimonidazole and retrograde perfusion of rat liver. Br J Cancer 72:889–895

    Article  PubMed  CAS  Google Scholar 

  21. Reffelmann T, Hale SL, Dow JS, Kloner RA (2003) No-reflow phenomenon persists long-term after ischemia/reperfusion in the rat and predicts infarct expansion. Circulation 108:2911–2917

    Article  PubMed  Google Scholar 

  22. Kloner RA, Ganote CE, Jennings RB (1974) The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54:1496–1508

    Article  PubMed  CAS  Google Scholar 

  23. Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T (2009) Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med 15:1031–1037

    Article  PubMed  CAS  Google Scholar 

  24. Colgan SP, Eltzschig HK (2012) Adenosine and hypoxia-inducible factor signaling in intestinal injury and recovery. Annu Rev Physiol 74:153–175

    Article  PubMed  CAS  Google Scholar 

  25. Karhausen J, Furuta GT, Tomaszewski JE, Johnson RS, Colgan SP, Haase VH (2004) Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J Clin Invest 114:1098–1106

    PubMed  CAS  Google Scholar 

  26. Colgan SP, Taylor CT (2010) Hypoxia: an alarm signal during intestinal inflammation. Nat Rev Gastroenterol Hepatol 7:281–287

    Article  PubMed  Google Scholar 

  27. Ryan S, Taylor CT, McNicholas WT (2005) Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 112:2660–2667

    Article  PubMed  CAS  Google Scholar 

  28. Hartmann H, Eltzschig HK, Wurz H, Hantke K, Rakin A, Yazdi AS, Matteoli G, Bohn E, Autenrieth IB, Karhausen J et al (2008) Hypoxia-independent activation of HIF-1 by enterobacteriaceae and their siderophores. Gastroenterology 134:756–767

    Article  PubMed  CAS  Google Scholar 

  29. Haeberle HA, Durrstein C, Rosenberger P, Hosakote YM, Kuhlicke J, Kempf VA, Garofalo RP, Eltzschig HK (2008) Oxygen-independent stabilization of hypoxia inducible factor (HIF)-1 during RSV infection. PLoS One 3:e3352

    Article  PubMed  CAS  Google Scholar 

  30. Nizet V, Johnson RS (2009) Interdependence of hypoxic and innate immune responses. Nat Rev Immunol 9:609–617

    Article  PubMed  CAS  Google Scholar 

  31. Kempf VA, Lebiedziejewski M, Alitalo K, Walzlein JH, Ehehalt U, Fiebig J, Huber S, Schutt B, Sander CA, Muller S et al (2005) Activation of hypoxia-inducible factor-1 in bacillary angiomatosis: evidence for a role of hypoxia-inducible factor-1 in bacterial infections. Circulation 111:1054–1062

    Article  PubMed  CAS  Google Scholar 

  32. Sitkovsky M, Lukashev D (2005) Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nat Rev Immunol 5:712–721

    Article  PubMed  CAS  Google Scholar 

  33. Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, Caldwell C, Ohta A, Thiel M (2004) Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol 22:657–682

    Article  PubMed  CAS  Google Scholar 

  34. Semenza GL (2009) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29:625–634

    Article  PubMed  CAS  Google Scholar 

  35. Ye J (2009) Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int J Obes (Lond) 33:54–66

    Article  CAS  Google Scholar 

  36. Fraisl P, Aragones J, Carmeliet P (2009) Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat Rev Drug Discov 8:139–152

    Article  PubMed  CAS  Google Scholar 

  37. Mahon PC, Hirota K, Semenza GL (2001) FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15:2675–2686

    Article  PubMed  CAS  Google Scholar 

  38. Bauerle JD, Grenz A, Kim JH, Lee HT, Eltzschig HK (2011) Adenosine generation and signaling during acute kidney injury. J Am Soc Nephrol 22:14–20

    Article  PubMed  CAS  Google Scholar 

  39. Aherne CM, Kewley EM, Eltzschig HK (2011) The resurgence of A2B adenosine receptor signaling. Biochim Biophys Acta 1808:1329–1339

    Article  PubMed  CAS  Google Scholar 

  40. Eltzschig HK, Macmanus CF, Colgan SP (2008) Neutrophils as sources of extracellular nucleotides: functional consequences at the vascular interface. Trends Cardiovasc Med 18:103–107

    Article  PubMed  CAS  Google Scholar 

  41. Kaelin WG Jr (2008) The von Hippel–Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer 8:865–873

    Article  PubMed  CAS  Google Scholar 

  42. Kaelin WG (2007) Von Hippel–Lindau disease. Annu Rev Pathol 2:145–173

    Article  PubMed  CAS  Google Scholar 

  43. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468

    Article  PubMed  CAS  Google Scholar 

  44. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A et al (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54

    Article  PubMed  CAS  Google Scholar 

  45. Aragones J, Fraisl P, Baes M, Carmeliet P (2009) Oxygen sensors at the crossroad of metabolism. Cell Metab 9:11–22

    Article  PubMed  CAS  Google Scholar 

  46. Ratcliffe PJ (2007) HIF-1 and HIF-2: working alone or together in hypoxia? J Clin Invest 117:862–865

    Article  PubMed  CAS  Google Scholar 

  47. Eltzschig HK, El Kasmi KC, Eckle T (2008) The HIF2A gene in familial erythrocytosis. N Engl J Med 358:1965–1966, author reply 1966–1967

    PubMed  CAS  Google Scholar 

  48. Wenger RH, Stiehl DP, Camenisch G (2005) Integration of oxygen signaling at the consensus HRE. Sci STKE 2005:re12. doi:10.1126/stke.3062005re12

  49. Eltzschig HK (2009) Adenosine: an old drug newly discovered. Anesthesiology 111:904–915

    Article  PubMed  CAS  Google Scholar 

  50. Loscalzo J (2010) The cellular response to hypoxia: tuning the system with microRNAs. J Clin Invest 120:3815–3817

    Article  PubMed  CAS  Google Scholar 

  51. Morote-Garcia JC, Rosenberger P, Nivillac NM, Coe IR, Eltzschig HK (2009) Hypoxia-inducible factor-dependent repression of equilibrative nucleoside transporter 2 attenuates mucosal inflammation during intestinal hypoxia. Gastroenterology 136:607–618

    Article  PubMed  CAS  Google Scholar 

  52. Morote-Garcia JC, Rosenberger P, Kuhlicke J, Eltzschig HK (2008) HIF-1-dependent repression of adenosine kinase attenuates hypoxia-induced vascular leak. Blood 111:5571–5580

    Article  PubMed  CAS  Google Scholar 

  53. Loffler M, Morote-Garcia JC, Eltzschig SA, Coe IR, Eltzschig HK (2007) Physiological roles of vascular nucleoside transporters. Arterioscler Thromb Vasc Biol 27:1004–1013

    Article  PubMed  CAS  Google Scholar 

  54. Eltzschig HK, Abdulla P, Hoffman E, Hamilton KE, Daniels D, Schonfeld C, Loffler M, Reyes G, Duszenko M, Karhausen J et al (2005) HIF-1-dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. J Exp Med 202:1493–1505

    Article  PubMed  CAS  Google Scholar 

  55. Grenz A, Clambey E, Eltzschig HK (2012) Hypoxia signaling during intestinal ischemia and inflammation. Curr Opin Crit Care. doi:10.1097/MCC.0b013e3283514bd0

  56. Koeppen M, Eckle T, Eltzschig HK (2011) Interplay of hypoxia and A2B adenosine receptors in tissue protection. Adv Pharmacol 61:145–186

    Article  PubMed  CAS  Google Scholar 

  57. Khakh BS, Burnstock G (2009) The double life of ATP. Sci Am 301(84–90):92

    Google Scholar 

  58. Fredholm BB (2007) Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ 14:1315–1323

    Article  PubMed  CAS  Google Scholar 

  59. Delacretaz E (2006) Clinical practice. Supraventricular tachycardia. N Engl J Med 354:1039–1051

    Article  PubMed  CAS  Google Scholar 

  60. Cronstein BN, Daguma L, Nichols D, Hutchison AJ, Williams M (1990) The adenosine/neutrophil paradox resolved: human neutrophils possess both A1 and A2 receptors that promote chemotaxis and inhibit O2 generation, respectively. J Clin Invest 85:1150–1157

    Article  PubMed  CAS  Google Scholar 

  61. Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920

    Article  PubMed  CAS  Google Scholar 

  62. Day YJ, Huang L, McDuffie MJ, Rosin DL, Ye H, Chen JF, Schwarzschild MA, Fink JS, Linden J, Okusa MD (2003) Renal protection from ischemia mediated by A2A adenosine receptors on bone marrow-derived cells. J Clin Invest 112:883–891

    PubMed  CAS  Google Scholar 

  63. Hasko G, Linden J, Cronstein B, Pacher P (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7:759–770

    Article  PubMed  CAS  Google Scholar 

  64. Lappas CM, Day YJ, Marshall MA, Engelhard VH, Linden J (2006) Adenosine A2A receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation. J Exp Med 203:2639–2648

    Article  PubMed  CAS  Google Scholar 

  65. Li L, Huang L, Ye H, Song SP, Bajwa A, Lee SJ, Moser EK, Jaworska K, Kinsey GR, Day YJ et al (2012) Dendritic cells tolerized with adenosine A2AR agonist attenuate acute kidney injury. J Clin Invest 122:3931–3942

    Article  PubMed  CAS  Google Scholar 

  66. Kong T, Westerman KA, Faigle M, Eltzschig HK, Colgan SP (2006) HIF-dependent induction of adenosine A2B receptor in hypoxia. FASEB J 20:2242–2250

    Article  PubMed  CAS  Google Scholar 

  67. Eltzschig HK, Thompson LF, Karhausen J, Cotta RJ, Ibla JC, Robson SC, Colgan SP (2004) Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood 104:3986–3992

    Article  PubMed  CAS  Google Scholar 

  68. Eltzschig HK, Ibla JC, Furuta GT, Leonard MO, Jacobson KA, Enjyoji K, Robson SC, Colgan SP (2003) Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. J Exp Med 198:783–796

    Article  PubMed  CAS  Google Scholar 

  69. Eckle T, Krahn T, Grenz A, Kohler D, Mittelbronn M, Ledent C, Jacobson MA, Osswald H, Thompson LF, Unertl K et al (2007) Cardioprotection by ecto-5′-nucleotidase (CD73) and A2B adenosine receptors. Circulation 115:1581–1590

    Article  PubMed  CAS  Google Scholar 

  70. Grenz A, Osswald H, Eckle T, Yang D, Zhang H, Tran ZV, Klingel K, Ravid K, Eltzschig HK (2008) The reno-vascular A2B adenosine receptor protects the kidney from ischemia. PLoS Med 5:e137

    Article  PubMed  CAS  Google Scholar 

  71. Aherne CM, Collins CB, Masterson JC, Tizzano M, Boyle TA, Westrich JA, Parnes JA, Furuta GT, Rivera-Nieves J, Eltzschig HK (2012) Neuronal guidance molecule netrin-1 attenuates inflammatory cell trafficking during acute experimental colitis. Gut 61:695–705

    Article  PubMed  CAS  Google Scholar 

  72. Hart ML, Grenz A, Gorzolla IC, Schittenhelm J, Dalton JH, Eltzschig HK (2011) Hypoxia-inducible factor-1alpha-dependent protection from intestinal ischemia/reperfusion injury involves ecto-5′-nucleotidase (CD73) and the A2B adenosine receptor. J Immunol 186:4367–4374

    Article  PubMed  CAS  Google Scholar 

  73. Hart ML, Jacobi B, Schittenhelm J, Henn M, Eltzschig HK (2009) Cutting edge: A2B adenosine receptor signaling provides potent protection during intestinal ischemia/reperfusion injury. J Immunol 182:3965–3968

    Article  PubMed  CAS  Google Scholar 

  74. Frick JS, MacManus CF, Scully M, Glover LE, Eltzschig HK, Colgan SP (2009) Contribution of adenosine A2B receptors to inflammatory parameters of experimental colitis. J Immunol 182:4957–4964

    Article  PubMed  CAS  Google Scholar 

  75. Zhong H, Shlykov SG, Molina JG, Sanborn BM, Jacobson MA, Tilley SL, Blackburn MR (2003) Activation of murine lung mast cells by the adenosine A3 receptor. J Immunol 171:338–345

    PubMed  CAS  Google Scholar 

  76. Eltzschig HK, Weissmuller T, Mager A, Eckle T (2006) Nucleotide metabolism and cell–cell interactions. Methods Mol Biol 341:73–87

    PubMed  CAS  Google Scholar 

  77. Faigle M, Seessle J, Zug S, El Kasmi KC, Eltzschig HK (2008) ATP release from vascular endothelia occurs across Cx43 hemichannels and is attenuated during hypoxia. PLoS One 3:e2801

    Article  PubMed  CAS  Google Scholar 

  78. Eltzschig HK, Eckle T, Mager A, Kuper N, Karcher C, Weissmuller T, Boengler K, Schulz R, Robson SC, Colgan SP (2006) ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial cell function. Circ Res 99:1100–1108

    Article  PubMed  CAS  Google Scholar 

  79. Burnstock G, Fredholm BB, Verkhratsky A (2011) Adenosine and ATP receptors in the brain. Curr Top Med Chem 11:973–1011

    Article  PubMed  CAS  Google Scholar 

  80. Riegel AK, Faigle M, Zug S, Rosenberger P, Robaye B, Boeynaems JM, Idzko M, Eltzschig HK (2011) Selective induction of endothelial P2Y6 nucleotide receptor promotes vascular inflammation. Blood 117:2548–2555

    Article  PubMed  CAS  Google Scholar 

  81. Hart ML, Henn M, Kohler D, Kloor D, Mittelbronn M, Gorzolla IC, Stahl GL, Eltzschig HK (2008) Role of extracellular nucleotide phosphohydrolysis in intestinal ischemia–reperfusion injury. FASEB J 22:2784–2797

    Article  PubMed  CAS  Google Scholar 

  82. Hart ML, Much C, Gorzolla IC, Schittenhelm J, Kloor D, Stahl GL, Eltzschig HK (2008) Extracellular adenosine production by ecto-5′-nucleotidase protects during murine hepatic ischemic preconditioning. Gastroenterology 135:1739.e3–1750.e3

    Article  CAS  Google Scholar 

  83. Hart ML, Kohler D, Eckle T, Kloor D, Stahl GL, Eltzschig HK (2008) Direct treatment of mouse or human blood with soluble 5′-nucleotidase inhibits platelet aggregation. Arterioscler Thromb Vasc Biol 28:1477–1483

    Article  PubMed  CAS  Google Scholar 

  84. Thompson LF, Eltzschig HK, Ibla JC, Van De Wiele CJ, Resta R, Morote-Garcia JC, Colgan SP (2004) Crucial role for ecto-5′-nucleotidase (CD73) in vascular leakage during hypoxia. J Exp Med 200:1395–1405

    Article  PubMed  CAS  Google Scholar 

  85. Synnestvedt K, Furuta GT, Comerford KM, Louis N, Karhausen J, Eltzschig HK, Hansen KR, Thompson LF, Colgan SP (2002) Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest 110:993–1002

    PubMed  CAS  Google Scholar 

  86. Eckle T, Grenz A, Laucher S, Eltzschig HK (2008) A2B adenosine receptor signaling attenuates acute lung injury by enhancing alveolar fluid clearance in mice. J Clin Invest 118:3301–3315

    PubMed  CAS  Google Scholar 

  87. Ahmad A, Ahmad S, Glover L, Miller SM, Shannon JM, Guo X, Franklin WA, Bridges JP, Schaack JB, Colgan SP et al (2009) Adenosine A2A receptor is a unique angiogenic target of HIF-2alpha in pulmonary endothelial cells. Proc Natl Acad Sci U S A 106:10684–10689

    Article  PubMed  CAS  Google Scholar 

  88. Eltzschig HK, Faigle M, Knapp S, Karhausen J, Ibla J, Rosenberger P, Odegard KC, Laussen PC, Thompson LF, Colgan SP (2006) Endothelial catabolism of extracellular adenosine during hypoxia: the role of surface adenosine deaminase and CD26. Blood 108:1602–1610

    Article  PubMed  CAS  Google Scholar 

  89. Hart ML, Much C, Kohler D, Schittenhelm J, Gorzolla IC, Stahl GL, Eltzschig HK (2008) Use of a hanging-weight system for liver ischemic preconditioning in mice. Am J Physiol Gastrointest Liver Physiol 294:G1431–G1440

    Article  PubMed  CAS  Google Scholar 

  90. Grenz A, Dalton JH, Bauerle JD, Badulak A, Ridyard D, Gandjeva A, Aherne CM, Brodsky KS, Kim JH, Tuder RM et al (2011) Partial netrin-1 deficiency aggravates acute kidney injury. PLoS One 6:e14812

    Article  PubMed  CAS  Google Scholar 

  91. Rosenberger P, Schwab JM, Mirakaj V, Masekowsky E, Mager A, Morote-Garcia JC, Unertl K, Eltzschig HK (2009) Hypoxia-inducible factor-dependent induction of netrin-1 dampens inflammation caused by hypoxia. Nat Immunol 10:195–202

    Article  PubMed  CAS  Google Scholar 

  92. Mirakaj V, Gatidou D, Potzsch C, Konig K, Rosenberger P (2011) Netrin-1 signaling dampens inflammatory peritonitis. J Immunol 186:549–555

    Article  PubMed  CAS  Google Scholar 

  93. Mirakaj V, Thix CA, Laucher S, Mielke C, Morote-Garcia JC, Schmit MA, Henes J, Unertl KE, Kohler D, Rosenberger P (2010) Netrin-1 dampens pulmonary inflammation during acute lung injury. Am J Respir Crit Care Med 181:815–824

    Article  PubMed  CAS  Google Scholar 

  94. Mutz C, Mirakaj V, Vagts DA, Westermann P, Waibler K, Konig K, Iber T, Noldge-Schomburg G, Rosenberger P (2010) The neuronal guidance protein netrin-1 reduces alveolar inflammation in a porcine model of acute lung injury. Crit Care 14:R189

    Article  PubMed  Google Scholar 

  95. Cummins EP, Seeballuck F, Keely SJ, Mangan NE, Callanan JJ, Fallon PG, Taylor CT (2008) The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology 134:156–165

    Article  PubMed  CAS  Google Scholar 

  96. Clambey ET, McNamee EN, Westrich JA, Glover LE, Campbell EL, Jedlicka P, de Zoeten EF, Cambier JC, Stenmark KR, Colgan SP et al (2012) Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1202366109

  97. Robinson A, Keely S, Karhausen J, Gerich ME, Furuta GT, Colgan SP (2008) Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition. Gastroenterology 134:145–155

    Article  PubMed  CAS  Google Scholar 

  98. Louis NA, Robinson AM, MacManus CF, Karhausen J, Scully M, Colgan SP (2008) Control of IFN-alphaA by CD73: implications for mucosal inflammation. J Immunol 180:4246–4255

    PubMed  CAS  Google Scholar 

  99. Friedman DJ, Kunzli BM, A-Rahim YI, Sevigny J, Berberat PO, Enjyoji K, Csizmadia E, Friess H, Robson SC (2009) From the cover: CD39 deletion exacerbates experimental murine colitis and human polymorphisms increase susceptibility to inflammatory bowel disease. Proc Natl Acad Sci U S A 106:16788–16793

    Article  PubMed  CAS  Google Scholar 

  100. Eltzschig HK, Rivera-Nieves J, Colgan SP (2009) Targeting the A2B adenosine receptor during gastrointestinal ischemia and inflammation. Expert Opin Ther Targets 13:1267–1277

    Article  PubMed  CAS  Google Scholar 

  101. Naganuma M, Wiznerowicz EB, Lappas CM, Linden J, Worthington MT, Ernst PB (2006) Cutting edge: critical role for A2A adenosine receptors in the T cell-mediated regulation of colitis. J Immunol 177:2765–2769

    PubMed  CAS  Google Scholar 

  102. Odashima M, Bamias G, Rivera-Nieves J, Linden J, Nast CC, Moskaluk CA, Marini M, Sugawara K, Kozaiwa K, Otaka M et al (2005) Activation of A2A adenosine receptor attenuates intestinal inflammation in animal models of inflammatory bowel disease. Gastroenterology 129:26–33

    Article  PubMed  CAS  Google Scholar 

  103. Clambey ET, McNamee EN, Westrich JA, Glover LE, Campbell EL, Jedlicka P, de Zoeten EF, Cambier JC, Stenmark KR, Colgan SP et al (2012) Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc Natl Acad Sci U S A 109:E2784–E2793

    Article  PubMed  CAS  Google Scholar 

  104. Kohler D, Eckle T, Faigle M, Grenz A, Mittelbronn M, Laucher S, Hart ML, Robson SC, Muller CE, Eltzschig HK (2007) CD39/ectonucleoside triphosphate diphosphohydrolase 1 provides myocardial protection during cardiac ischemia/reperfusion injury. Circulation 116:1784–1794

    Article  PubMed  CAS  Google Scholar 

  105. Grenz A, Kim JH, Bauerle JD, Tak E, Eltzschig HK, Clambey ET (2012) Adora2b adenosine receptor signaling protects during acute kidney injury via inhibition of neutrophil-dependent TNF-alpha release. J Immunol. doi:10.4049/jimmunol.1201651

  106. Grenz A, Zhang H, Eckle T, Mittelbronn M, Wehrmann M, Kohle C, Kloor D, Thompson LF, Osswald H, Eltzschig HK (2007) Protective role of ecto-5′-nucleotidase (CD73) in renal ischemia. J Am Soc Nephrol 18:833–845

    Article  PubMed  CAS  Google Scholar 

  107. Grenz A, Zhang H, Hermes M, Eckle T, Klingel K, Huang DY, Muller CE, Robson SC, Osswald H, Eltzschig HK (2007) Contribution of E-NTPDase1 (CD39) to renal protection from ischemia–reperfusion injury. FASEB J 21:2863–2873

    Article  PubMed  CAS  Google Scholar 

  108. Koeppen M, McNamee EN, Brodsky KS, Aherne CM, Faigle M, Downey GP, Colgan SP, Evans CM, Schwartz DA, Eltzschig HK (2012) Detrimental role of the airway mucin Muc5ac during ventilator-induced lung injury. Mucosal Immunol. doi:10.1038/mi.2012.114

  109. Eckle T, Koeppen M, Eltzschig HK (2009) Role of extracellular adenosine in acute lung injury. Physiology (Bethesda) 24:298–306

    Article  CAS  Google Scholar 

  110. Schingnitz U, Hartmann K, Macmanus CF, Eckle T, Zug S, Colgan SP, Eltzschig HK (2010) Signaling through the A2B adenosine receptor dampens endotoxin-induced acute lung injury. J Immunol 184:5271–5279

    Article  PubMed  CAS  Google Scholar 

  111. Reutershan J, Vollmer I, Stark S, Wagner R, Ngamsri KC, Eltzschig HK (2009) Adenosine and inflammation: CD39 and CD73 are critical mediators in LPS-induced PMN trafficking into the lungs. FASEB J 23:473–482

    Article  PubMed  CAS  Google Scholar 

  112. Eckle T, Fullbier L, Wehrmann M, Khoury J, Mittelbronn M, Ibla J, Rosenberger P, Eltzschig HK (2007) Identification of ectonucleotidases CD39 and CD73 in innate protection during acute lung injury. J Immunol 178:8127–8137

    PubMed  CAS  Google Scholar 

  113. Thiel M, Chouker A, Ohta A, Jackson E, Caldwell C, Smith P, Lukashev D, Bittmann I, Sitkovsky MV (2005) Oxygenation inhibits the physiological tissue-protecting mechanism and thereby exacerbates acute inflammatory lung injury. PLoS Biol 3:e174

    Article  PubMed  CAS  Google Scholar 

  114. Khoury J, Ibla JC, Neish AS, Colgan SP (2007) Antiinflammatory adaptation to hypoxia through adenosine-mediated cullin-1 deneddylation. J Clin Invest 117:703–711

    Article  PubMed  CAS  Google Scholar 

  115. Eckle T, Faigle M, Grenz A, Laucher S, Thompson LF, Eltzschig HK (2008) A2B adenosine receptor dampens hypoxia-induced vascular leak. Blood 111:2024–2035

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present research work was supported by Grant D/10/52531 from the German Academic Exchange Service (DAAD) to J.M.P., a German Research Foundation (DFG) Grant (EH401/1-1) to H.E., an American Heart Association Grant to A.G., and National Heart Institute Grants R01-HL0921, R01-DK083385, and R01-HL098294 and a grant by the Crohn’s and Colitis Foundation of America (CCFA) to H.K.E.

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger K. Eltzschig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poth, J.M., Brodsky, K., Ehrentraut, H. et al. Transcriptional control of adenosine signaling by hypoxia-inducible transcription factors during ischemic or inflammatory disease. J Mol Med 91, 183–193 (2013). https://doi.org/10.1007/s00109-012-0988-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-012-0988-7

Keywords

Navigation