Skip to main content

Advertisement

Log in

MicroRNAs in brain metastases: big things come in small packages

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Metastatic brain tumors provide a formidable obstacle in the survival of affected cancer patients, an obstacle that current treatment is essentially ineffective against. Our understanding of the metastatic cascade has demonstrated the role of incorrectly regulated protein expression and proved it to be a crucial component of this process. Recently, molecular studies have emphasized the role of microRNAs, small non-coding RNAs that alter protein expression, in the regulation of both normal and abnormal biological processes, including cancer and its metastasis to the brain. Furthermore, studies have demonstrated the ability to distinguish normal from cancerous cells, primary from secondary brain tumors, and correctly categorize metastatic brain tumor tissue of origin based solely on microRNA profiles. Interestingly, manipulation of microRNAs has proven effective in cancer treatment. With the promise of reduced toxicity, increased efficacy, and individually directed therapy, using microRNA in the treatment of metastatic brain tumors may prove very useful. In this review, we focus on the multiple potential microRNA targets for the treatment of metastatic brain lesions as well as current and future directions for its use in gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Soffietti R, Ruda R, Mutani R (2002) Management of brain metastases. J Neurol 249:1357–1369

    Article  PubMed  Google Scholar 

  2. Hoang-Xuan K (1996) Brain metastases and their treatment. Rev Prat 46:457–463

    PubMed  CAS  Google Scholar 

  3. Barajas RF Jr, Cha S (2012) Imaging diagnosis of brain metastasis. Prog Neurol Surg 25:55–73

    Article  PubMed  Google Scholar 

  4. Weber MA, Giesel FL, Stieltjes B (2008) MRI for identification of progression in brain tumors: from morphology to function. Expert Rev Neurother 8:1507–1525

    Article  PubMed  Google Scholar 

  5. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  PubMed  CAS  Google Scholar 

  6. Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10:704–714

    Article  PubMed  CAS  Google Scholar 

  7. Calin GA, Croce CM (2006) MicroRNA–cancer connection: the beginning of a new tale. Cancer Res 66:7390–7394

    Article  PubMed  CAS  Google Scholar 

  8. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103:2257–2261

    Article  PubMed  CAS  Google Scholar 

  9. Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M, Benjamin H, Shabes N, Tabak S, Levy A et al (2008) MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 26:462–469

    Article  PubMed  CAS  Google Scholar 

  10. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801

    Article  PubMed  CAS  Google Scholar 

  11. Yang JS, Lai EC (2011) Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell 43:892–903

    Article  PubMed  CAS  Google Scholar 

  12. Ma L, Huang Y, Zhu W, Zhou S, Zhou J, Zeng F, Liu X, Zhang Y, Yu J (2011) An integrated analysis of miRNA and mRNA expressions in non-small cell lung cancers. PLoS One 6:e26502

    Article  PubMed  CAS  Google Scholar 

  13. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2:e363

    Article  PubMed  Google Scholar 

  14. Muinos-Gimeno M, Espinosa-Parrilla Y, Guidi M, Kagerbauer B, Sipila T, Maron E, Pettai K, Kananen L, Navines R, Martin-Santos R et al (2011) Human microRNAs miR-22, miR-138-2, miR-148a, and miR-488 are associated with panic disorder and regulate several anxiety candidate genes and related pathways. Biol Psychiatry 69:526–533

    Article  PubMed  CAS  Google Scholar 

  15. Saus E, Soria V, Escaramis G, Vivarelli F, Crespo JM, Kagerbauer B, Menchon JM, Urretavizcaya M, Gratacos M, Estivill X (2010) Genetic variants and abnormal processing of pre-miR-182, a circadian clock modulator, in major depression patients with late insomnia. Hum Mol Genet 19:4017–4025

    Article  PubMed  CAS  Google Scholar 

  16. De Santis G, Ferracin M, Biondani A, Caniatti L, Rosaria Tola M, Castellazzi M, Zagatti B, Battistini L, Borsellino G, Fainardi E et al (2010) Altered miRNA expression in T regulatory cells in course of multiple sclerosis. J Neuroimmunol 226:165–171

    Article  PubMed  Google Scholar 

  17. Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  PubMed  CAS  Google Scholar 

  18. Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM, Farace MG (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334:1351–1358

    Article  PubMed  CAS  Google Scholar 

  19. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K et al (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324:1710–1713

    Article  PubMed  CAS  Google Scholar 

  20. Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, Wilson M, Wang X, Shelton J, Shingara J et al (2007) The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 67:7713–7722

    Article  PubMed  CAS  Google Scholar 

  21. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688

    Article  PubMed  CAS  Google Scholar 

  22. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601

    Article  PubMed  CAS  Google Scholar 

  23. Uhlmann S, Zhang JD, Schwager A, Mannsperger H, Riazalhosseini Y, Burmester S, Ward A, Korf U, Wiemann S, Sahin O (2012) MiR-200bc/429 cluster targets PLCgamma1 and differentially regulates proliferation and EGF-driven invasion than miR-200a/141 in breast cancer. Oncogene 29:4297–4306

    Article  Google Scholar 

  24. Gravgaard KH, Lyng MB, Laenkholm AV, Sokilde R, Nielsen BS, Litman T, Litman T, Ditzel HJ (2012) The miRNA-200 family and miRNA-9 exhibit differential expression in primary versus corresponding metastatic tissue in breast cancer. Breast Cancer Res Treat 134(1):207–217. doi:10.1007/s10549-012-1969-9

    Article  PubMed  CAS  Google Scholar 

  25. Mueller WC, Spector Y, Edmonston TB, St Cyr B, Jaeger D, Lass U, Aharonov R, Rosenwald S, Chajut A (2011) Accurate classification of metastatic brain tumors using a novel microRNA-based test. Oncologist 16:165–174

    Article  PubMed  Google Scholar 

  26. Nass D, Rosenwald S, Meiri E, Gilad S, Tabibian-Keissar H, Schlosberg A, Kuker H, Sion-Vardy N, Tobar A, Kharenko O et al (2009) MiR-92b and miR-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol 19:375–383

    Article  PubMed  CAS  Google Scholar 

  27. Cheng H, Zhang L, Cogdell DE, Zheng H, Schetter AJ, Nykter M, Harris CC, Chen K, Hamilton SR, Zhang W (2011) Circulating plasma miR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One 6(e17745):18

    Google Scholar 

  28. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, Banham AH, Pezzella F, Boultwood J, Wainscoat JS et al (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141:672–675

    Article  PubMed  Google Scholar 

  29. Szafranska AE, Davison TS, Shingara J, Doleshal M, Riggenbach JA, Morrison CD, Jewell S, Labourier E (2008) Accurate molecular characterization of formalin-fixed, paraffin-embedded tissues by microRNA expression profiling. J Mol Diagn 10:415–423

    Article  PubMed  CAS  Google Scholar 

  30. Janssen EA, Slewa A, Gudlaugsson E, Jonsdottir K, Skaland I, Soiland H, Baak JP (2010) Biologic profiling of lymph node negative breast cancers by means of microRNA expression. Mod Pathol 23:1567–1576

    Article  PubMed  CAS  Google Scholar 

  31. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105:10513–10518

    Article  PubMed  CAS  Google Scholar 

  32. Tsai WC, Hsu PW, Lai TC, Chau GY, Lin CW, Chen CM, Lin CD, Liao YL, Wang JL, Chau YP et al (2009) MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology 49:1571–1582

    Article  PubMed  CAS  Google Scholar 

  33. Budhu A, Jia HL, Forgues M, Liu CG, Goldstein D, Lam A, Zanetti KA, Ye QH, Qin LX, Croce CM et al (2008) Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 47:897–907

    Article  PubMed  CAS  Google Scholar 

  34. Barshack I, Meiri E, Rosenwald S, Lebanony D, Bronfeld M, Aviel-Ronen S, Rosenblatt K, Polak-Charcon S, Leizerman I, Ezagouri M et al (2010) Differential diagnosis of hepatocellular carcinoma from metastatic tumors in the liver using microRNA expression. Int J Biochem Cell Biol 42:1355–1362

    Article  PubMed  CAS  Google Scholar 

  35. Walenkamp AM, Sonke GS, Sleijfer DT (2009) Clinical and therapeutic aspects of extrapulmonary small cell carcinoma. Cancer Treat Rev 35:228–236

    Article  PubMed  CAS  Google Scholar 

  36. Aoyama H (2011) Radiation therapy for brain metastases in breast cancer patients. Breast Cancer 18:244–251

    Article  PubMed  Google Scholar 

  37. Fowler A, Cook R, Biggs M, Little N, Assaad N, McDonald K (2008) Survival of patients following neurosurgical treatment of colorectal adenocarcinoma metastasis in the Northern Sydney–Central Coast area. J Clin Neurosci 15:998–1004

    Article  PubMed  CAS  Google Scholar 

  38. Achtaropoulos AK, Mitsos AP, Detorakis ET, Georgakoulias NV, Drakonaki EE, Kozobolis VP (2005) Late isolated brain metastasis following enucleation for choroidal melanoma. Ophthalmic Surg Lasers Imaging 36:151–154

    PubMed  Google Scholar 

  39. Mai KT, Landry DC, Robertson SJ, Commons AS, Burns BF, Thijssen A, Collins J (2001) A comparative study of metastatic renal cell carcinoma with correlation to subtype and primary tumor. Pathol Res Pract 197:671–675

    Article  PubMed  CAS  Google Scholar 

  40. Teplyuk NM, Mollenhauer B, Gabriely G, Giese A, Kim E, Smolsky M, Kim RY, Saria MG, Pastorino S, Kesari S et al (2012) MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity. Neuro Oncol 14:689–700

    Article  PubMed  CAS  Google Scholar 

  41. Lee DY, Deng Z, Wang CH, Yang BB (2007) MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci U S A 104:20350–20355

    Article  PubMed  CAS  Google Scholar 

  42. Bonnomet A, Syne L, Brysse A, Feyereisen E, Thompson EW, Noel A, Foidart JM, Birembaut P, Polette M, Gilles C (2012) A dynamic in vivo model of epithelial-to-mesenchymal transitions in circulating tumor cells and metastases of breast cancer. Oncogene 31:3741–3753. doi:10.1038/onc.2011.540

    Article  PubMed  CAS  Google Scholar 

  43. Kalluri R, Weinberg RA (2009) The basics of epithelial–mesenchymal transition. J Clin Invest 119:1420–1428

    Article  PubMed  CAS  Google Scholar 

  44. Yang J, Weinberg RA (2008) Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14:818–829

    Article  PubMed  CAS  Google Scholar 

  45. Zhang C, Wang C, Chen X, Yang C, Li K, Wang J, Dai J, Hu Z, Zhou X, Chen L et al (2010) Expression profile of microRNAs in serum: a fingerprint for esophageal squamous cell carcinoma. Clin Chem 56:1871–1879

    Article  PubMed  CAS  Google Scholar 

  46. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9:582–589

    Article  PubMed  CAS  Google Scholar 

  47. Moore N, Lyle S (2011) Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J Oncol 2011:pii:396076. doi:10.1155/2011/396076

    Article  Google Scholar 

  48. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  PubMed  CAS  Google Scholar 

  49. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, Diehn M, Liu H, Panula SP, Chiao E et al (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138:592–603

    Article  PubMed  CAS  Google Scholar 

  50. Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068

    Google Scholar 

  51. Langley RR, Fidler IJ (2011) The seed and soil hypothesis revisited—the role of tumor–stroma interactions in metastasis to different organs. Int J Cancer 128:2527–2535

    Article  PubMed  CAS  Google Scholar 

  52. Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, Minn AJ, van de Vijver MJ, Gerald WL, Foekens JA et al (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459:1005–1009

    Article  PubMed  CAS  Google Scholar 

  53. Lee BC, Lee TH, Avraham S, Avraham HK (2004) Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol Cancer Res 2:327–338

    PubMed  CAS  Google Scholar 

  54. Aboussekhra A (2011) Role of cancer-associated fibroblasts in breast cancer development and prognosis. Int J Dev Biol 55:841–849

    Article  PubMed  Google Scholar 

  55. Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58:1408–1416

    PubMed  CAS  Google Scholar 

  56. Allen NJ, Barres BA (2009) Neuroscience: glia—more than just brain glue. Nature 457:675–677

    Article  PubMed  CAS  Google Scholar 

  57. Bullock TH, Bennett MV, Johnston D, Josephson R, Marder E, Fields RD (2005) Neuroscience. The neuron doctrine, redux. Science 310:791–793

    Article  PubMed  CAS  Google Scholar 

  58. Fields RD, Stevens-Graham B (2002) New insights into neuron–glia communication. Science 298:556–562

    Article  PubMed  CAS  Google Scholar 

  59. Chen LW, Yung KL, Chan YS (2005) Reactive astrocytes as potential manipulation targets in novel cell replacement therapy of Parkinson’s disease. Curr Drug Targets 6:821–833

    Article  PubMed  CAS  Google Scholar 

  60. Mahesh VB, Dhandapani KM, Brann DW (2006) Role of astrocytes in reproduction and neuroprotection. Mol Cell Endocrinol 246:1–9

    Article  PubMed  CAS  Google Scholar 

  61. Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. Neuroscientist 11:400–407

    Article  PubMed  CAS  Google Scholar 

  62. Fidler IJ, Balasubramanian K, Lin Q, Kim SW, Kim SJ (2010) The brain microenvironment and cancer metastasis. Mol Cells 30:93–98

    Article  PubMed  CAS  Google Scholar 

  63. Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD, Gerald WL, Massague J (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451:147–152

    Article  PubMed  CAS  Google Scholar 

  64. Zhang L, Sullivan PS, Goodman JC, Gunaratne PH, Marchetti D (2011) MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase. Cancer Res 71:645–654

    Article  PubMed  CAS  Google Scholar 

  65. Li Y, Zhao S, Zhen Y, Li Q, Teng L, Asai A, Kawamoto K (2011) A miR-21 inhibitor enhances apoptosis and reduces G(2)-M accumulation induced by ionizing radiation in human glioblastoma U251 cells. Brain Tumor Pathol 28:209–214

    Article  PubMed  Google Scholar 

  66. Ren Y, Kang CS, Yuan XB, Zhou X, Xu P, Han L, Wang GX, Jia Z, Zhong Y, Yu S et al (2010) Co-delivery of as-miR-21 and 5-FU by poly(amidoamine) dendrimer attenuates human glioma cell growth in vitro. J Biomater Sci Polym Ed 21:303–314

    Article  PubMed  CAS  Google Scholar 

  67. Lancon A, Kaminski J, Tili E, Michaille JJ, Latruffe N (2012) Control of MicroRNA expression as a new way for Resveratrol to deliver its beneficial effects. J Agric Food Chem 60:8783–8789

    Google Scholar 

  68. Mukhopadhyay P, Das S, Gorbunov N, Ahsan MK, Otani H, Pacher P, Das DK (2012) Modulation of miroRNA 20b with Resveratrol and Longevinex is linked with their potent anti-angiogenic action in the ischemic myocardium and synergestic effects of Resveratrol and γ-tocotrienol. J Cell Mol Med 16:2504–2517. doi:10.1111/j.1582-4934

    Article  PubMed  CAS  Google Scholar 

  69. Kelly EJ, Russell SJ (2009) MicroRNAs and the regulation of vector tropism. Mol Ther 17:409–416

    Article  PubMed  CAS  Google Scholar 

  70. Kirn D (2001) Clinical research results with dl1520 (Onyx-015), a replication-selective adenovirus for the treatment of cancer: what have we learned? Gene Ther 8:89–98

    Article  PubMed  CAS  Google Scholar 

  71. Small EJ, Carducci MA, Burke JM, Rodriguez R, Fong L, van Ummersen L, Yu DC, Aimi J, Ando D, Working P et al (2006) A phase I trial of intravenous CG7870, a replication-selective, prostate-specific antigen-targeted oncolytic adenovirus, for the treatment of hormone-refractory, metastatic prostate cancer. Mol Ther 14:107–117

    Article  PubMed  CAS  Google Scholar 

  72. Cawood R, Chen HH, Carroll F, Bazan-Peregrino M, van Rooijen N, Seymour LW (2009) Use of tissue-specific microRNA to control pathology of wild-type adenovirus without attenuation of its ability to kill cancer cells. PLoS Pathog 5(e1000440):21

    Google Scholar 

  73. Jin H, Lv S, Yang J, Wang X, Hu H, Su C, Zhou C, Li J, Huang Y, Li L et al (2011) Use of microRNA Let-7 to control the replication specificity of oncolytic adenovirus in hepatocellular carcinoma cells. PLoS One 6:e21307

    Article  PubMed  CAS  Google Scholar 

  74. Cawood R, Wong SL, Di Y, Baban DF, Seymour LW (2011) MicroRNA controlled adenovirus mediates anti-cancer efficacy without affecting endogenous microRNA activity. PLoS One 6:e16152

    Article  PubMed  CAS  Google Scholar 

  75. Kawashima T, Kagawa S, Kobayashi N, Shirakiya Y, Umeoka T, Teraishi F, Taki M, Kyo S, Tanaka N, Fujiwara T (2004) Telomerase-specific replication-selective virotherapy for human cancer. Clin Cancer Res 10:285–292

    Article  PubMed  CAS  Google Scholar 

  76. Taki M, Kagawa S, Nishizaki M, Mizuguchi H, Hayakawa T, Kyo S, Nagai K, Urata Y, Tanaka N, Fujiwara T (2005) Enhanced oncolysis by a tropism-modified telomerase-specific replication-selective adenoviral agent OBP-405 (“Telomelysin-RGD”). Oncogene 24:3130–3140

    Article  PubMed  CAS  Google Scholar 

  77. Watanabe T, Hioki M, Fujiwara T, Nishizaki M, Kagawa S, Taki M, Kishimoto H, Endo Y, Urata Y, Tanaka N et al (2006) Histone deacetylase inhibitor FR901228 enhances the antitumor effect of telomerase-specific replication-selective adenoviral agent OBP-301 in human lung cancer cells. Exp Cell Res 312:256–265

    PubMed  CAS  Google Scholar 

  78. Nemunaitis J, Tong AW, Nemunaitis M, Senzer N, Phadke AP, Bedell C, Adams N, Zhang YA, Maples PB, Chen S et al (2010) A phase I study of telomerase-specific replication competent oncolytic adenovirus (telomelysin) for various solid tumors. Mol Ther 18:429–434

    Article  PubMed  CAS  Google Scholar 

  79. Sugio K, Sakurai F, Katayama K, Tashiro K, Matsui H, Kawabata K, Kawase A, Iwaki M, Hayakawa T, Fujiwara T et al (2011) Enhanced safety profiles of the telomerase-specific replication-competent adenovirus by incorporation of normal cell-specific microRNA-targeted sequences. Clin Cancer Res 17:2807–2818

    Article  PubMed  CAS  Google Scholar 

  80. Ma L, Liu J, Shen J, Liu L, Wu J, Li W, Luo J, Chen Q, Qian C (2010) Expression of miR-122 mediated by adenoviral vector induces apoptosis and cell cycle arrest of cancer cells. Cancer Biol Ther 9:554–561

    Article  PubMed  CAS  Google Scholar 

  81. Idogawa M, Sasaki Y, Suzuki H, Mita H, Imai K, Shinomura Y, Tokino T (2009) A single recombinant adenovirus expressing p53 and p21-targeting artificial microRNAs efficiently induces apoptosis in human cancer cells. Clin Cancer Res 15:3725–3732

    Article  PubMed  CAS  Google Scholar 

  82. Kim SJ, Oh JS, Shin JY, Lee KD, Sung KW, Nam SJ, Chun KH (2011) Development of microRNA-145 for therapeutic application in breast cancer. J Control Release 155:427–434

    Article  PubMed  CAS  Google Scholar 

  83. Langlois RA, Shapiro JS, Pham AM, tenOever BR (2012) In vivo delivery of cytoplasmic RNA virus-derived miRNAs. Mol Ther 20:367–375

    Article  PubMed  CAS  Google Scholar 

  84. Xu Y, Xia F, Ma L, Shan J, Shen J, Yang Z, Liu J, Cui Y, Bian X, Bie P et al (2011) MicroRNA-122 sensitizes HCC cancer cells to adriamycin and vincristine through modulating expression of MDR and inducing cell cycle arrest. Cancer Lett 310:160–169

    PubMed  CAS  Google Scholar 

  85. Frankel LB, Wen J, Lees M, Hoyer-Hansen M, Farkas T, Krogh A, Jaattela M, Lund AH (2011) MicroRNA-101 is a potent inhibitor of autophagy. EMBO J 30:4628–4641

    Article  PubMed  CAS  Google Scholar 

  86. Tazawa H, Yano S, Yoshida R, Yamasaki Y, Sasaki T, Hashimoto Y, Kuroda S, Ouchi M, Onishi T, Uno F et al (2012) Genetically engineered oncolytic adenovirus induces autophagic cell death through an E2F1–microRNA-7–epidermal growth factor receptor axis. Int J Cancer 131:2939–2950. doi:10.1002/ijc.27589

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Studies in the neuro-oncology laboratory are supported by grants from the NCI (R01CA122930, R01CA138587) and NINDS (NS077388, U01NS069997).

Conflict of interest

The authors did not declare any conflict of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej S. Lesniak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDermott, R., Gabikian, P., Sarvaiya, P. et al. MicroRNAs in brain metastases: big things come in small packages. J Mol Med 91, 5–13 (2013). https://doi.org/10.1007/s00109-012-0971-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-012-0971-3

Keywords

Navigation