Skip to main content

Advertisement

Log in

Association of the co-stimulator OX40L with systemic lupus erythematosus

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The archetypal systemic autoimmune disease systemic lupus erythematosus (SLE) has incompletely understood pathogenesis, although evidence suggests a strong genetic component. Unlike organ-specific autoimmune diseases such as type 1 diabetes, the genetics of lupus are not as dominated by the effect of a single locus. Undoubtedly, the major histocompatibility complex is the greatest and most consistent genetic risk factor in SLE susceptibility; however, recent candidate gene and whole genome association (WGA) studies have identified several other genes that are likely to advance our understanding of this complex disease. One of these, the TNF superfamily member OX40L, interacts with its unique receptor OX40, to maintain T cell memory by providing a late-stage co-stimulatory signal to sustain the survival of activated T cells. The precise immunological consequences are yet to be determined; however, signalling through OX40-OX40L is bidirectional and the reverse signalling pathway via OX40L may quantitatively enhance B cell proliferation to augment the B cell hyperactivity found in SLE. Like OX40L, several genes recently identified in WGA studies are components of B cell pathways. Collectively, these genes will help us to unravel the mechanisms by which aberrant B cell signalling results in lupus pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Reference

  1. Cunninghame Graham DS, Graham RR, Manku H et al (2008) Polymorphism at the TNF superfamily gene OX40L confers susceptibility to systemic lupus erythematosus. Nat Genet 40:83–89

    Article  PubMed  Google Scholar 

  2. Hikami K, Tsuchiya N, Tokunaga K (2000) New variations in human OX40 ligand (CD134L) gene. Genes Immun 1:521–522

    Article  PubMed  CAS  Google Scholar 

  3. Jacob CO, Reiff A, Armstrong DL et al (2007) Identification of novel susceptibility genes in childhood-onset systemic lupus erythematosus using a uniquely designed candidate gene pathway platform. Arthritis Rheum 56:4164–4173

    Article  PubMed  CAS  Google Scholar 

  4. Stuber E, Neurath M, Calderhead D et al (1995) Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity 2:507–521

    Article  PubMed  CAS  Google Scholar 

  5. Patschan S, Dolff S, Kribben A et al (2006) CD134 expression on CD4+ T cells is associated with nephritis and disease activity in patients with systemic lupus erythematosus. Clin Exp Immunol 145:235–242

    Article  PubMed  CAS  Google Scholar 

  6. Aten J, Roos A, Claessen N et al (2000) Strong and selective glomerular localization of CD134 ligand and TNF receptor-1 in proliferative lupus nephritis. J Am Soc Nephrol 11:1426–1438

    PubMed  CAS  Google Scholar 

  7. Compaan DM, Hymowitz SG (2006) The crystal structure of the costimulatory OX40-OX40L complex. Structure 14:1321–1330

    Article  PubMed  CAS  Google Scholar 

  8. Linton PJ, Bautista B, Bierderman E et al (2003) Costimulation via OX40L expressed by B cells is sufficient to determine the extent of primary CD4 cell expansion and Th2 cytokine secretion in vivo. J Exp Med 197:875–883

    Article  PubMed  CAS  Google Scholar 

  9. Chen AI, McAdam AJ, Buhlmann JE et al (1999) Ox40-ligand has a critical costimulatory role in dendritic cell:T cell interactions. Immunity 11:689–698

    Article  PubMed  CAS  Google Scholar 

  10. Kato H, Kojima H, Ishii N et al (2004) Essential role of OX40L on B cells in persistent alloantibody production following repeated alloimmunizations. J Clin Immunol 24:237–248

    Article  PubMed  CAS  Google Scholar 

  11. Imura A, Hori T, Imada K et al (1996) The human OX40/gp34 system directly mediates adhesion of activated T cells to vascular endothelial cells. J Exp Med 183:2185–2195

    Article  PubMed  CAS  Google Scholar 

  12. Wang HC, Klein JR (2001) Multiple levels of activation of murine CD8(+) intraepithelial lymphocytes defined by OX40 (CD134) expression: effects on cell-mediated cytotoxicity, IFN-gamma, and IL-10 regulation. J Immunol 167:6717–6723

    PubMed  CAS  Google Scholar 

  13. Kim MY, Gaspal FM, Wiggett HE et al (2003) CD4(+)CD3(−) accessory cells costimulate primed CD4 T cells through OX40 and CD30 at sites where T cells collaborate with B cells. Immunity 18:643–654

    Article  PubMed  CAS  Google Scholar 

  14. Lane P, Kim MY, Withers D et al (2008) Lymphoid tissue inducer cells in adaptive CD4 T cell dependent responses. Semin Immunol 20:159–163

    Article  PubMed  CAS  Google Scholar 

  15. Godfrey WR, Fagnoni FF, Harara MA et al (1994) Identification of a human OX-40 ligand, a costimulator of CD4+ T cells with homology to tumor necrosis factor. J Exp Med 180:757–762

    Article  PubMed  CAS  Google Scholar 

  16. Weinberg AD, Wegmann KW, Funatake C et al (1999) Blocking OX-40/OX-40 ligand interaction in vitro and in vivo leads to decreased T cell function and amelioration of experimental allergic encephalomyelitis. J Immunol 162:1818–1826

    PubMed  CAS  Google Scholar 

  17. Weinberg AD, Bourdette DN, Sullivan TJ et al (1996) Selective depletion of myelin-reactive T cells with the anti-OX-40 antibody ameliorates autoimmune encephalomyelitis. Nat Med 2:183–189

    Article  PubMed  CAS  Google Scholar 

  18. Yoshioka T, Nakajima A, Akiba H et al (2000) Contribution of OX40/OX40 ligand interaction to the pathogenesis of rheumatoid arthritis. Eur J Immunol 30:2815–2823

    Article  PubMed  CAS  Google Scholar 

  19. Malmstrom V, Shipton D, Singh B et al (2001) CD134L expression on dendritic cells in the mesenteric lymph nodes drives colitis in T cell-restored SCID mice. J Immunol 166:6972–6981

    PubMed  CAS  Google Scholar 

  20. Martin-Orozco N, Chen Z, Poirot L et al (2003) Paradoxical dampening of anti-islet self-reactivity but promotion of diabetes by OX40 ligand. J Immunol 171:6954–6960

    PubMed  CAS  Google Scholar 

  21. Murata K, Nose M, Ndhlovu LC et al (2002) Constitutive OX40/OX40 ligand interaction induces autoimmune-like diseases. J Immunol 169:4628–4636

    PubMed  CAS  Google Scholar 

  22. Seshasayee D, Lee WP, Zhou M et al (2007) In vivo blockade of OX40 ligand inhibits thymic stromal lymphopoietin driven atopic inflammation. J Clin Invest 117:3868–3878

    Article  PubMed  CAS  Google Scholar 

  23. Barrat FJ, Cua DJ, Boonstra A et al (2002) In vitro generation of interleukin 10-producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J Exp Med 195:603–616

    Article  PubMed  CAS  Google Scholar 

  24. Wang X, Ria M, Kelmenson PM et al (2005) Positional identification of TNFSF4, encoding OX40 ligand, as a gene that influences atherosclerosis susceptibility. Nat Genet 37:365–372

    Article  PubMed  CAS  Google Scholar 

  25. So T, Song J, Sugie K et al (2006) Signals from OX40 regulate nuclear factor of activated T cells c1 and T cell helper 2 lineage commitment. Proc Natl Acad Sci U S A 103:3740–3745

    Article  PubMed  CAS  Google Scholar 

  26. Song J, So T, Cheng M et al (2005) Sustained survivin expression from OX40 costimulatory signals drives T cell clonal expansion. Immunity 22:621–631

    Article  PubMed  CAS  Google Scholar 

  27. Kozyrev SV, Abelson AK, Wojcik J et al (2008) Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat Genet 40:211–216

    Article  PubMed  CAS  Google Scholar 

  28. Brown EE, Edberg JC, Kimberly RP (2007) Fc receptor genes and the systemic lupus erythematosus diathesis. Autoimmunity 40:567–581

    Article  PubMed  CAS  Google Scholar 

  29. Reth M, Wienands J (1997) Initiation and processing of signals from the B cell antigen receptor. Annu Rev Immunol 15:453–479

    Article  PubMed  CAS  Google Scholar 

  30. Chu ZT, Tsuchiya N, Kyoguka C et al (2004) Association of Fcgamma receptor IIb polymorphism with susceptibility to systemic lupus erythematosus in Chinese: a common susceptibility gene in the Asian populations. Tissue Antigens 63:21–27

    Article  PubMed  CAS  Google Scholar 

  31. Mackay M, Stanevsky A, Wang T et al (2006) Selective dysregulation of the FcgammaIIB receptor on memory B cells in SLE. J Exp Med 203:2157–2164

    Article  PubMed  CAS  Google Scholar 

  32. Hsueh RC, Scheuermann RH (2000) Tyrosine kinase activation in the decision between growth, differentiation, and death responses initiated from the B cell antigen receptor. Adv Immunol 75:283–316

    Article  PubMed  CAS  Google Scholar 

  33. Hom G, Graham RR, Modrek B et al (2008) Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med 358:900–909

    Article  PubMed  CAS  Google Scholar 

  34. Sugawara H, Kurosaki M, Takata M et al (1997) Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J 16:3078–3088

    Article  PubMed  CAS  Google Scholar 

  35. Graham RR, Cotsapas C, Davies L et al (2008) Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat Genet (in press)

  36. Lee EG, Boone DL, Chai S et al (2000) Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 289:2350–2354

    Article  PubMed  CAS  Google Scholar 

  37. Musone SL, Taylor KE, Lu TT et al (2008) Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet 40:1062–1064

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Vyse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manku, H., Graham, D.S.C. & Vyse, T.J. Association of the co-stimulator OX40L with systemic lupus erythematosus. J Mol Med 87, 229–234 (2009). https://doi.org/10.1007/s00109-008-0431-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-008-0431-2

Keywords

Navigation