Skip to main content

Advertisement

Log in

The endocannabinoid system in the physiology and pathophysiology of the gastrointestinal tract

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Numerous investigations have recently demonstrated the important roles of the endocannabinoid system in the gastrointestinal (GI) tract under physiological and pathophysiological conditions. In the GI tract, cannabinoid type 1 (CB1) receptors are present in neurons of the enteric nervous system and in sensory terminals of vagal and spinal neurons, while cannabinoid type 2 receptors are located in immune cells. Activation of CB1 receptors was shown to modulate several functions in the GI tract, including gastric secretion, gastric emptying and intestinal motility. Under pathophysiological conditions induced experimentally in rodents, the endocannabinoid system conveys protection to the GI tract (e.g. from inflammation and abnormally high gastric and enteric secretions). Such protective activities are largely in agreement with anecdotal reports from folk medicine on the use of Cannabis sativa extracts by subjects suffering from various GI disorders. Thus, the endocannabinoid system may serve as a potentially promising therapeutic target against different GI disorders, including frankly inflammatory bowel diseases (e.g. Crohn’s disease), functional bowel diseases (e.g. irritable bowel syndrome) and secretion- and motility-related disorders. As stimulation of this modulatory system by CB1 receptor agonists can lead to unwanted psychotropic side effects, an alternative and promising avenue for therapeutic applications resides in the treatment with CB1 receptor agonists that are unable to cross the blood–brain barrier, or with compounds that inhibit the degradation of endogenous ligands (endocannabinoids) of CB1 receptors, hence prolonging the activity of the endocannabinoid system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Anandamide:

arachidonoyl ethanolamide

2-AG:

2-arachidonoyl glycerol

AT:

anandamide transporter

CB1:

cannabinoid type 1

CB2:

cannabinoid type 2

FAAH:

fatty acid amide hydrolase

GI:

gastrointestinal

Δ9-THC:

delta-9-tetrahydrocannabinol

TRPV1:

vanilloid type 1

CCK:

cholecystokinin

References

  1. Grispoon L, Bakalar JB (1997) Marijuana, the forbidden medicine. Yale University Press, New Haven, Connecticut, USA, 184 pp

    Google Scholar 

  2. Coutts AA, Izzo AA (2004) The gastrointestinal pharmacology of cannabinoids: an update. Curr Opin Pharmacol 4:572–579

    PubMed  Google Scholar 

  3. Pertwee RG (2001) Cannabinoids and the gastrointestinal tract. Gut 48:859–867

    Article  PubMed  Google Scholar 

  4. Pertwee R (1993) The evidence for the existence of cannabinoid receptors. Gen Pharmacol 24:811–824

    PubMed  Google Scholar 

  5. Pertwee RG (1997) Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 74:129–180

    Article  PubMed  Google Scholar 

  6. Cota D, Marsicano G, Tschop M, Grubler Y, Flachskamm C, Schubert M, Auer D, Yassouridis A, Thone-Reineke C, Ortmann S, Tomassoni F, Cervino C, Nisoli E, Linthorst AC, Pasquali R, Lutz B, Stalla GK, Pagotto U (2003) The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest 112:423–431

    Article  PubMed  Google Scholar 

  7. Golech SA, McCarron RM, Chen Y, Bembry J, Lenz F, Mechoulam R, Shohami E, Spatz M (2004) Human brain endothelium: coexpression and function of vanilloid and endocannabinoid receptors. Brain Res Mol Brain Res 132:87–92

    PubMed  Google Scholar 

  8. Samson MT, Small-Howard A, Shimoda LM, Koblan-Huberson M, Stokes AJ, Turner H (2003) Differential roles of CB1 and CB2 cannabinoid receptors in mast cells. J Immunol 170:4953–4962

    PubMed  Google Scholar 

  9. Izzo AA (2004) Cannabinoids and intestinal motility: welcome to CB2 receptors. Br J Pharmacol 142:1201–1202

    PubMed  Google Scholar 

  10. Di Carlo G, Izzo AA (2003) Cannabinoids for gastrointestinal diseases: potential therapeutic applications. Expert Opin Investig Drugs 12:39–49

    PubMed  Google Scholar 

  11. Pinto L, Capasso R, Di Carlo G, Izzo AA (2002) Endocannabinoids and the gut. Prostaglandins Leukot Essent Fatty Acids 66:333–341

    PubMed  Google Scholar 

  12. Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 4:873–884

    Article  PubMed  Google Scholar 

  13. Di Marzo V, Bifulco M, De Petrocellis L (2004) The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov 3:771–784

    PubMed  Google Scholar 

  14. Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202

    Article  PubMed  Google Scholar 

  15. Mathison R, Ho W, Pittman QJ, Davison JS, Sharkey KA (2004) Effects of cannabinoid receptor-2 activation on accelerated gastrointestinal transit in lipopolysaccharide-treated rats. Br J Pharmacol 142:1247–1254

    PubMed  Google Scholar 

  16. Howlett AC, Qualy JM, Khachatrian LL (1986) Involvement of Gi in the inhibition of adenylate cyclase by cannabimimetic drugs. Mol Pharmacol 29:307–313

    PubMed  Google Scholar 

  17. Derkinderen P, Valjent E, Toutant M, Corvol JC, Enslen H, Ledent C, Trzaskos J, Caboche J, Girault JA (2003) Regulation of extracellular signal-regulated kinase by cannabinoids in hippocampus. J Neurosci 23:2371–2382

    PubMed  Google Scholar 

  18. Gómez del Pulgar T, Velasco G, Guzman M (2000) The CB1 cannabinoid receptor is coupled to the activation of protein kinase B/Akt. Biochem J 347:369–373

    PubMed  Google Scholar 

  19. Derkinderen P, Ledent C, Parmentier M, Girault JA (2001) Cannabinoids activate p38 mitogen-activated protein kinases through CB1 receptors in hippocampus. J Neurochem 77:957–960

    PubMed  Google Scholar 

  20. Downer EJ, Fogarty MP, Campbell VA (2003) Tetrahydrocannabinol-induced neurotoxicity depends on CB1 receptor-mediated c-Jun N-terminal kinase activation in cultured cortical neurons. Br J Pharmacol 140:547–557

    PubMed  Google Scholar 

  21. McAllister SD, Glass M (2002) CB(1) and CB(2) receptor-mediated signalling: a focus on endocannabinoids. Prostaglandins Leukot Essent Fatty Acids 66:161–171

    Article  PubMed  Google Scholar 

  22. Mu J, Zhuang S, Kirby MT, Hampson RE, Deadwyler SA (1999) Cannabinoid receptors differentially modulate potassium A and D currents in hippocampal neurons in culture. J Pharmacol Exp Ther 291:893–902

    PubMed  Google Scholar 

  23. Capasso R, Izzo AA, Fezza F, Pinto A, Capasso F, Mascolo N, Di Marzo V (2001) Inhibitory effect of palmitoylethanolamide on gastrointestinal motility in mice. Br J Pharmacol 134:945–950

    PubMed  Google Scholar 

  24. Wang X, Miyares RL, Ahern GP (2005) Oleoylethanolamide excites vagal sensory neurons, induces visceral pain and reduces short-term food intake in mice via TRPV1. J Physiol 564:541–547

    PubMed  Google Scholar 

  25. Pertwee RG, Ross RA (2002) Cannabinoid receptors and their ligands. Prostaglandins Leukot Essent Fatty Acids 66:101–121

    Article  PubMed  Google Scholar 

  26. Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V, Julius D, Hogestatt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457

    Article  PubMed  Google Scholar 

  27. McVey DC, Schmid PC, Schmid HH, Vigna SR (2003) Endocannabinoids induce ileitis in rats via the capsaicin receptor (VR1). J Pharmacol Exp Ther 304:713–722

    PubMed  Google Scholar 

  28. Di Marzo V, De Petrocellis L, Fezza F, Ligresti A, Bisogno T (2002) Anandamide receptors. Prostaglandins Leukot Essent Fatty Acids 66:377–391

    Article  PubMed  Google Scholar 

  29. Maingret F, Patel AJ, Lazdunski M, Honore E (2001) The endocannabinoid anandamide is a direct and selective blocker of the background K+ channel TASK-1. EMBO J 20:47–54

    Article  PubMed  Google Scholar 

  30. Monory K, Tzavara ET, Lexime J, Ledent C, Parmentier M, Borsodi A, Hanoune J (2002) Novel, not adenylyl cyclase-coupled cannabinoid binding site in cerebellum of mice. Biochem Biophys Res Commun 292:231–235

    PubMed  Google Scholar 

  31. Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83:1017–1066

    PubMed  Google Scholar 

  32. Pertwee RG (1999) Pharmacology of cannabinoid receptor ligands. Curr Med Chem 6:635–664

    PubMed  Google Scholar 

  33. Hillard CJ, Manna S, Greenberg MJ, DiCamelli R, Ross RA, Stevenson LA, Murphy V, Pertwee RG, Campbell WB (1999) Synthesis and characterization of potent and selective agonists of the neuronal cannabinoid receptor (CB1). J Pharmacol Exp Ther 289:1427–1433

    PubMed  Google Scholar 

  34. Ibrahim MM, Deng H, Zvonok A, Cockayne DA, Kwan J, Mata HP, Vanderah TW, Lai J, Porreca F, Makriyannis A, Malan TP Jr (2003) Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the CNS. Proc Natl Acad Sci U S A 100:10529–10533

    PubMed  Google Scholar 

  35. Ross RA, Brockie HC, Stevenson LA, Murphy VL, Templeton F, Makriyannis A, Pertwee RG (1999) Agonist-inverse agonist characterization at CB1 and CB2 cannabinoid receptors of L759633, L759656, and AM630. Br J Pharmacol 126:665–672

    PubMed  Google Scholar 

  36. Hanus L, Breuer A, Tchilibon S, Shiloah S, Goldenberg D, Horowitz M, Pertwee RG, Ross RA, Mechoulam R, Fride E (1999) HU-308: a specific agonist for CB2, a peripheral cannabinoid receptor. Proc Natl Acad Sci U S A 96:14228–14233

    PubMed  Google Scholar 

  37. Rinaldi-Carmona M, Barth F, Heaulme M, Alonso R, Shire D, Congy C, Soubrie P, Breliere JC, Le Fur G (1995) Biochemical and pharmacological characterisation of SR141716A, the first potent and selective brain cannabinoid receptor antagonist. Life Sci 56:1941–1947

    Article  PubMed  Google Scholar 

  38. Rinaldi-Carmona M, Barth F, Congy C, Martinez S, Oustric D, Perio A, Poncelet M, Maruani J, Arnone M, Finance O, Soubrie P, Le Fur G (2004) SR147778 [5-(1-bromophenyl)-1-(2,4-dichlorophenyl)-4-ethyl-N-(1-piperidinyl)-1H-pyrazole-3-carboxamide], a new potent and selective antagonist of the CB1 cannabinoid receptor: biochemical and pharmacological characterization. J Pharmacol Exp Ther 310:905–914

    Article  PubMed  Google Scholar 

  39. Gatley SJ, Gifford AN, Volkow ND, Lan R, Makriyannis A (1996) 123I-labeled AM251: a radioiodinated ligand which binds in vivo to mouse brain cannabinoid CB1 receptors. Eur J Pharmacol 307:331–338

    PubMed  Google Scholar 

  40. Gatley SJ, Lan R, Volkow ND, Pappas N, King P, Wong CT, Gifford AN, Pyatt B, Dewey SL, Makriyannis A (1998) Imaging the brain marijuana receptor: development of a radioligand that binds to cannabinoid CB1 receptors in vivo. J Neurochem 70:417–423

    PubMed  Google Scholar 

  41. Lange JH, Coolen HK, van Stuivenberg HH, Dijksman JA, Herremans AH, Ronken E, Keizer HG, Tipker K, McCreary AC, Veerman W, Wals HC, Stork B, Verveer PC, den Hartog AP, de Jong NM, Adolfs TJ, Hoogendoorn J, Kruse CG (2004) Synthesis, biological properties, and molecular modeling investigations of novel 3,4-diarylpyrazolines as potent and selective CB(1) cannabinoid receptor antagonists. J Med Chem 47:627–643

    Article  PubMed  Google Scholar 

  42. Felder CC, Joyce KE, Briley EM, Glass M, Mackie KP, Fahey KJ, Cullinan GJ, Hunden DC, Johnson DW, Chaney MO, Koppel GA, Brownstein M (1998) LY320135, a novel cannabinoid CB1 receptor antagonist, unmasks coupling of the CB1 receptor to stimulation of cAMP accumulation. J Pharmacol Exp Ther 284:291–297

    PubMed  Google Scholar 

  43. Rinaldi-Carmona M, Barth F, Millan J, Derocq JM, Casellas P, Congy C, Oustric D, Sarran M, Bouaboula M, Calandra B, Portier M, Shire D, Breliere JC, Le Fur GL (1998) SR 144528, the first potent and selective antagonist of the CB2 cannabinoid receptor. J Pharmacol Exp Ther 284:644–650

    PubMed  Google Scholar 

  44. Pertwee R, Griffin G, Fernando S, Li X, Hill A, Makriyannis A (1995) AM630, a competitive cannabinoid receptor antagonist. Life Sci 56:1949–1955

    Article  PubMed  Google Scholar 

  45. Pertwee RG (2000) Cannabinoid receptor ligands: clinical and neuropharmacological considerations, relevant to future drug discovery and development. Expert Opin Investig Drugs 9:1553–1571

    PubMed  Google Scholar 

  46. Cravatt BF, Demarest K, Patricelli MP, Bracey MH, Giang DK, Martin BR, Lichtman AH (2001) Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci U S A 98:9371–9376

    PubMed  Google Scholar 

  47. Dinh TP, Carpenter D, Leslie FM, Freund TF, Katona I, Sensi SL, Kathuria S, Piomelli D (2002) Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci U S A 99:10819–10824

    PubMed  Google Scholar 

  48. Fowler CJ, Tiger G, Ligresti A, Lopez-Rodriguez ML, Di Marzo V (2004) Selective inhibition of anandamide cellular uptake versus enzymatic hydrolysis—a difficult issue to handle. Eur J Pharmacol 492:1–11

    PubMed  Google Scholar 

  49. Fegley D, Gaetani S, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D (2004) Characterization of the fatty-acid amide hydrolase inhibitor URB597: effects on anandamide and oleoylethanolamide deactivation. J Pharmacol Exp Ther 313:352–358

    PubMed  Google Scholar 

  50. Bisogno T, Melck D, De Petrocellis L, Bobrov MY, Gretskaya NM, Bezuglov VV, Sitachitta N, Gerwick WH, Di Marzo V (1998) Arachidonoylserotonin and other novel inhibitors of fatty acid amide hydrolase. Biochem Biophys Res Commun 248:515–522

    Article  PubMed  Google Scholar 

  51. Mechoulam R, Ben Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90

    Article  PubMed  Google Scholar 

  52. Izzo AA, Fezza F, Capasso R, Bisogno T, Pinto L, Iuvone T, Esposito G, Mascolo N, Di Marzo V, Capasso F (2001) Cannabinoid CB(1)-receptor mediated regulation of gastrointestinal motility in mice in a model of intestinal inflammation. Br J Pharmacol 134:563–570

    PubMed  Google Scholar 

  53. Pinto L, Izzo AA, Cascio MG, Bisogno T, Hospodar-Scott K, Brown DR, Mascolo N, Di Marzo V, Capasso F (2002) Endocannabinoids as physiological regulators of colonic propulsion in mice. Gastroenterology 123:227–234

    PubMed  Google Scholar 

  54. Katayama K, Ueda N, Kurahashi Y, Suzuki H, Yamamoto S, Kato I (1997) Distribution of anandamide amidohydrolase in rat tissues with special reference to small intestine. Biochim Biophys Acta 1347:212–218

    PubMed  Google Scholar 

  55. Pertwee RG, Fernando SR, Griffin G, Abadji V, Makriyannis A (1995) Effect of phenylmethylsulphonyl fluoride on the potency of anandamide as an inhibitor of electrically evoked contractions in two isolated tissue preparations. Eur J Pharmacol 272:73–78

    PubMed  Google Scholar 

  56. Coutts AA, Irving AJ, Mackie K, Pertwee RG, Anavi-Goffer S (2002) Localisation of cannabinoid CB(1) receptor immunoreactivity in the guinea pig and rat myenteric plexus. J Comp Neurol 448:410–422

    PubMed  Google Scholar 

  57. Kulkarni-Narla A, Brown DR (2000) Localization of CB1-cannabinoid receptor immunoreactivity in the porcine enteric nervous system. Cell Tissue Res 302:73–80

    PubMed  Google Scholar 

  58. Croci T, Manara L, Aureggi G, Guagnini F, Rinaldi-Carmona M, Maffrand JP, Le Fur G, Mukenge S, Ferla G (1998) In vitro functional evidence of neuronal cannabinoid CB1 receptors in human ileum. Br J Pharmacol 125:1393–1395

    PubMed  Google Scholar 

  59. Casu MA, Porcella A, Ruiu S, Saba P, Marchese G, Carai MA, Reali R, Gessa GL, Pani L (2003) Differential distribution of functional cannabinoid CB1 receptors in the mouse gastroenteric tract. Eur J Pharmacol 459:97–105

    PubMed  Google Scholar 

  60. Facci L, Dal Toso R, Romanello S, Buriani A, Skaper SD, Leon A (1995) Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide. Proc Natl Acad Sci U S A 92:3376–3380

    PubMed  Google Scholar 

  61. Griffin G, Fernando SR, Ross RA, McKay NG, Ashford ML, Shire D, Huffman JW, Yu S, Lainton JA, Pertwee RG (1997) Evidence for the presence of CB2-like cannabinoid receptors on peripheral nerve terminals. Eur J Pharmacol 339:53–61

    Article  PubMed  Google Scholar 

  62. Kulkarni-Narla A, Brown DR (2001) Opioid, cannabinoid and vanilloid receptor localization on porcine cultured myenteric neurons. Neurosci Lett 308:153–156

    PubMed  Google Scholar 

  63. Storr M, Sibaev A, Marsicano G, Lutz B, Schusdziarra V, Timmermans JP, Allescher HD (2004) Cannabinoid receptor type 1 modulates excitatory and inhibitory neurotransmission in mouse colon. Am J Physiol Gastrointest Liver Physiol 286:G110–G117

    PubMed  Google Scholar 

  64. Coutts AA, Pertwee RG (1998) Evidence that cannabinoid-induced inhibition of electrically evoked contractions of the myenteric plexus—longitudinal muscle preparation of guinea-pig small intestine can be modulated by Ca2+ and cAMP. Can J Physiol Pharmacol 76:340–346

    PubMed  Google Scholar 

  65. Mang CF, Erbelding D, Kilbinger H (2001) Differential effects of anandamide on acetylcholine release in the guinea-pig ileum mediated via vanilloid and non-CB1 cannabinoid receptors. Br J Pharmacol 134:161–167

    PubMed  Google Scholar 

  66. Capasso R, Matias I, Lutz B, Borrelli F, Capasso F, Marsicano G, Mascolo N, Petrosino S, Monory K, Valenti M, Di Marzo V, Izzo AA (2005). Fatty acid amide hydrolase controls mouse intestinal motility in vivo. Gastroenterology (in press)

  67. Mascolo N, Izzo AA, Ligresti A, Costagliola A, Pinto L, Cascio MG, Maffia P, Cecio A, Capasso F, Di Marzo V (2002) The endocannabinoid system and the molecular basis of paralytic ileus in mice. FASEB J 16:1973–1975

    PubMed  Google Scholar 

  68. Shook JE, Burks TF (1989) Psychoactive cannabinoids reduce gastrointestinal propulsion and motility in rodents. J Pharmacol Exp Ther 249:444–449

    PubMed  Google Scholar 

  69. McCallum RW, Soykan I, Sridhar KR, Ricci DA, Lange RC, Plankey MW (1999) Delta-9-tetrahydrocannabinol delays the gastric emptying of solid food in humans: a double-blind, randomized study. Aliment Pharmacol Ther 13:77–80

    Article  Google Scholar 

  70. Shook JE, Dewey WL, Burks TF (1986) The central and peripheral effects of delta-9-tetrahydrocannabinol on gastrointestinal transit in mice. NIDA Res Monogr 67:222–227

    PubMed  Google Scholar 

  71. Landi M, Croci T, Rinaldi-Carmona M, Maffrand JP, Le Fur G, Manara L (2002) Modulation of gastric emptying and gastrointestinal transit in rats through intestinal cannabinoid CB(1) receptors. Eur J Pharmacol 450:77–83

    PubMed  Google Scholar 

  72. Izzo AA, Mascolo N, Capasso R, Germano MP, De Pasquale R, Capasso F (1999) Inhibitory effect of cannabinoid agonists on gastric emptying in the rat. Naunyn-Schmiedeberg’s Arch Pharmacol 360:221–223

    Article  Google Scholar 

  73. Krowicki ZK, Moerschbaecher JM, Winsauer PJ, Digavalli SV, Hornby PJ (1999) Delta9-tetrahydrocannabinol inhibits gastric motility in the rat through cannabinoid CB1 receptors. Eur J Pharmacol 371:187–196

    PubMed  Google Scholar 

  74. Rivas V, Garcia R (1980) Inhibition of histamine-stimulated gastric acid secretion by delta 9-tetrahydrocannabinol in rat isolated stomach. Eur J Pharmacol 65:317–318

    PubMed  Google Scholar 

  75. Coruzzi G, Adami M, Coppelli G, Frati P, Soldani G (1999) Inhibitory effect of the cannabinoid receptor agonist WIN55,212-2 on pentagastrin-induced gastric acid secretion in the anaesthetized rat. Naunyn-Schmiedeberg’s Arch Pharmacol 360:715–718

    Article  Google Scholar 

  76. Adami M, Frati P, Bertini S, Kulkarni-Narla A, Brown DR, De Caro G, Coruzzi G, Soldani G (2002) Gastric antisecretory role and immunohistochemical localization of cannabinoid receptors in the rat stomach. Br J Pharmacol 135:1598–1606

    PubMed  Google Scholar 

  77. Cota D, Marsicano G, Lutz B, Vicennati V, Stalla GK, Pasquali R, Pagotto U (2003) Endogenous cannabinoid system as a modulator of food intake. Int J Obes Relat Metab Disord 27:289–301

    PubMed  Google Scholar 

  78. Gomez R, Navarro M, Ferrer B, Trigo JM, Bilbao A, Del Arco I, Cippitelli A, Nava F, Piomelli D, Rodríguez de Fonseca F (2002) A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. J Neurosci 22:9612–9617

    PubMed  Google Scholar 

  79. Tramer MR, Carroll D, Campbell FA, Reynolds DJ, Moore RA, McQuay HJ (2001) Cannabinoids for control of chemotherapy induced nausea and vomiting: quantitative systematic review. BMJ 323:16–21

    PubMed  Google Scholar 

  80. Porter AC, Felder CC (2001) The endocannabinoid nervous system: unique opportunities for therapeutic intervention. Pharmacol Ther 90:45–60

    PubMed  Google Scholar 

  81. Van Sickle MD, Oland LD, Ho W, Hillard CJ, Mackie K, Davison JS, Sharkey KA (2001) Cannabinoids inhibit emesis through CB1 receptors in the brainstem of the ferret. Gastroenterology 121:767–774

    PubMed  Google Scholar 

  82. Darmani NA, Johnson JC (2004) Central and peripheral mechanisms contribute to the antiemetic actions of delta-9-tetrahydrocannabinol against 5-hydroxytryptophan-induced emesis. Eur J Pharmacol 488:201–212

    Article  PubMed  Google Scholar 

  83. Van Sickle MD, Oland LD, Mackie K, Davison JS, Sharkey KA (2003) Delta9-tetrahydrocannabinol selectively acts on CB1 receptors in specific regions of dorsal vagal complex to inhibit emesis in ferrets. Am J Physiol Gastrointest Liver Physiol 285:G566–G576

    PubMed  Google Scholar 

  84. Germano MP, D’Angelo V, Mondello MR, Pergolizzi S, Capasso F, Capasso R, Izzo AA, Mascolo N, De Pasquale R (2001) Cannabinoid CB1-mediated inhibition of stress-induced gastric ulcers in rats. Naunyn-Schmiedeberg’s Arch Pharmacol 363:241–244

    Article  Google Scholar 

  85. Holloway RH (2001) Systemic pharmacomodulation of transient lower esophageal sphincter relaxations. Am J Med 111(Suppl 8A):178S–185S

    PubMed  Google Scholar 

  86. Partosoedarso ER, Abrahams TP, Scullion RT, Moerschbaecher JM, Hornby PJ (2003) Cannabinoid 1 receptor in the dorsal vagal complex modulates lower oesophageal sphincter relaxation in ferrets. J Physiol 550:149–158

    PubMed  Google Scholar 

  87. Lehmann A, Blackshaw LA, Branden L, Carlsson A, Jensen J, Nygren E, Smid SD (2002) Cannabinoid receptor agonism inhibits transient lower esophageal sphincter relaxations and reflux in dogs. Gastroenterology 123:1129–1134

    PubMed  Google Scholar 

  88. Izzo AA, Capasso R, Pinto L, Di Carlo G, Mascolo N, Capasso F (2001) Effect of vanilloid drugs on gastrointestinal transit in mice. Br J Pharmacol 132:1411–1416

    PubMed  Google Scholar 

  89. Tyler K, Hillard CJ, Greenwood-Van Meerveld B (2000) Inhibition of small intestinal secretion by cannabinoids is CB1 receptor-mediated in rats. Eur J Pharmacol 409:207–211

    PubMed  Google Scholar 

  90. Green BT, Brown DR (2002) Active bicarbonate-dependent secretion evoked by 5-hydroxytryptamine in porcine ileal mucosa is mediated by opioid-sensitive enteric neurons. Eur J Pharmacol 451:185–190

    PubMed  Google Scholar 

  91. Nalin DR, Levine MM, Rhead J, Bergquist E, Rennels M, Hughes T, O’Donnel S, Hornick RB (1978) Cannabis, hypochlorhydria, and cholera. Lancet 2:859–862

    PubMed  Google Scholar 

  92. Izzo AA, Capasso F, Costagliola A, Bisogno T, Marsicano G, Ligresti A, Matias I, Capasso R, Pinto L, Borrelli F, Cecio A, Lutz B, Mascolo N, Di Marzo V (2003) An endogenous cannabinoid tone attenuates cholera toxin-induced fluid accumulation in mice. Gastroenterology 125:765–774

    PubMed  Google Scholar 

  93. Russo EB (2004) Clinical endocannabinoid deficiency (CECD): can this concept explain therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? Neuro-Endocrinol Lett 25:31–39

    PubMed  Google Scholar 

  94. Croci T, Landi M, Galzin AM, Marini P (2003) Role of cannabinoid CB1 receptors and tumor necrosis factor-alpha in the gut and systemic anti-inflammatory activity of SR 141716 (rimonabant) in rodents. Br J Pharmacol 140:115–122

    PubMed  Google Scholar 

  95. Massa F, Marsicano G, Hermann H, Cannich A, Monory K, Cravatt BF, Ferri GL, Sibaev A, Storr M, Lutz B (2004) The endogenous cannabinoid system protects against colonic inflammation. J Clin Invest 113:1202–1209

    PubMed  Google Scholar 

  96. Hall W, Christie M, Currow D (2005) Cannabinoids and cancer: causation, remediation, and palliation. Lancet Oncol 6:35–42

    PubMed  Google Scholar 

  97. Ligresti A, Bisogno T, Matias I, De Petrocellis L, Cascio MG, Cosenza V, D’argenio G, Scaglione G, Bifulco M, Sorrentini I, Di Marzo V (2003) Possible endocannabinoid control of colorectal cancer growth. Gastroenterology 125:677–687

    Article  PubMed  Google Scholar 

  98. Holzer P (2001) Gastrointestinal afferents as targets of novel drugs for the treatment of functional bowel disorders and visceral pain. Eur J Pharmacol 429:177–193

    PubMed  Google Scholar 

  99. Corchero J, Manzanares J, Fuentes JA (2004) Cannabinoid/opioid crosstalk in the central nervous system. Crit Rev Neurobiol 16:159–172

    PubMed  Google Scholar 

  100. Coutts AA, Pertwee RG (1997) Inhibition by cannabinoid receptor agonists of acetylcholine release from the guinea-pig myenteric plexus. Br J Pharmacol 121:1557–1566

    PubMed  Google Scholar 

  101. Strader AD, Woods SC (2005) Gastrointestinal hormones and food intake. Gastroenterology 128:175–191

    PubMed  Google Scholar 

  102. Burdyga G, Lal S, Varro A, Dimaline R, Thompson DG, Dockray GJ (2004) Expression of cannabinoid CB1 receptors by vagal afferent neurons is inhibited by cholecystokinin. J Neurosci 24:2708–2715

    PubMed  Google Scholar 

  103. Ralevic V (2003) Cannabinoid modulation of peripheral autonomic and sensory neurotransmission. Eur J Pharmacol 472:1–21

    PubMed  Google Scholar 

  104. Ahluwalia J, Urban L, Capogna M, Bevan S, Nagy I (2000) Cannabinoid 1 receptors are expressed in nociceptive primary sensory neurons. Neuroscience 100:685–688

    PubMed  Google Scholar 

  105. Ahluwalia J, Urban L, Bevan S, Nagy I (2003) Anandamide regulates neuropeptide release from capsaicin-sensitive primary sensory neurons by activating both the cannabinoid 1 receptor and the vanilloid receptor 1 in vitro. Eur J Neurosci 17:2611–2618

    PubMed  Google Scholar 

  106. Drosmann DA, Corazzieri E, Talley NJ, Thompsom WG, Whitehead WE (2000) The functional gastrointestinal disorders. Diagnosis, pathophysiology and treatment: a multinational consensus. University of North Carolina, Chapel Hill, NC, USA, 370 pp

    Google Scholar 

Download references

Acknowledgements

We wish to thank Drs. Giovanni Marsicano and Krisztina Monory for discussions and suggestions, and Michael Plenikowski for the graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beat Lutz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massa, F., Storr, M. & Lutz, B. The endocannabinoid system in the physiology and pathophysiology of the gastrointestinal tract. J Mol Med 83, 944–954 (2005). https://doi.org/10.1007/s00109-005-0698-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-005-0698-5

Keywords

Navigation