Skip to main content
Log in

Myelodysplastische Syndrome

Myelodysplastic syndromes

  • Schwerpunkt
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Unter dem Oberbegriff der „myelodysplastischen Syndrome“ (MDS) werden vielfältige Erkrankungen der hämatopoetischen Stammzelle zusammengefasst. Sie alle zeichnen sich durch eine ineffiziente Hämatopoese sowie dysplastische Veränderungen im Knochenmark aus. Im peripheren Blut fällt zumeist eine Anämie auf, die in der Regel makrozytär ist und ggf. von Neutropenie und Thrombozytopenie begleitet ist. Klinisch resultieren daraus Schwäche, Leistungsminderung und Abgeschlagenheit (Anämie), Blutungsneigung (Thrombozytopenie) sowie eine erhöhte Infektneigung (Neutropenie). Etwa ein Viertel aller Patienten mit MDS entwickelt im Laufe der Erkrankung eine akute myeloische Leukämie (AML), die durch eine Zunahme der Blastenzahl auf > 20 % im Knochenmark definiert ist. Eine Risikoeinteilung der Patienten in Bezug auf das Gesamtüberleben und die Transformation zur AML basiert auf dem International Prognostic Scoring System (IPSS) sowie auf dem neu formulierten IPSS-R. Dank neuer Sequenzierungsmethoden konnten viele rekurrente Mutationen bei MDS-Patienten identifiziert werden, insbesondere in Genen des Splicing-Apparats sowie in epigenetisch wirksamen Genen (ASXL1, TET2). Die Therapie richtet sich nach dem Risikoprofil des Patienten. Für Hochrisikopatienten in gutem Allgemeinzustand und einem biologischen Alter von ≤ 70 Jahren ist die allogene Stammzelltransplantation eine kurative Option. Ansonsten erfolgt bei hohem Risiko eine Behandlung mit demethylierenden Substanzen wie Azacitidin. Patienten mit niedrigem Risiko werden vornehmlich supportiv behandelt. Eine Sonderstellung nimmt das MDS mit Deletion 5q ein, das mit Lenalidomid sehr erfolgreich behandelt werden kann. Da die Therapie noch nicht optimiert ist, sollten betroffene Patienten unbedingt in klinische Studien eingeschlossen werden.

Abstract

Myelodysplastic syndrome (MDS) encompasses a heterogeneous group of diseases originating in hematopoietic stem cells and is characterized by inefficient hematopoiesis and dysplastic changes in the bone marrow. In peripheral blood patients show anemia (mostly macrocytic), frequently accompanied by neutropenia and thrombocytopenia. Thus, clinically the patients suffer from fatigue (anemia), increased bleeding (thrombocytopenia) and infectious complications (neutropenia). Approximately one quarter of MDS patients develop acute myeloid leukemia (AML) in the course of the disease, which is characterized by a 20 % or more increase of blasts in the bone marrow. The estimated overall survival as well as the risk for AML transformation can be calculated with the international prognostic scoring system (IPSS) as well as the revised IPSS score (IPSS-R). Novel sequencing methods (e.g. next generation sequencing) allow the detection of recurrent gene mutations in MDS patients. Genes of the splicing machinery as well as genes involved in epigenetic regulation (e.g. ASXL1 and TET2) are most frequently mutated in MDS. Therapy is selected based on the patient risk profile (IPSS). Allogeneic stem cell transplantation is a curative approach for high risk patients (i.e. IPSS int-2 and higher) with a good performance status and a biological age below 70 years. Otherwise, high risk patients are treated with demethylating agents (e.g. decitabine and azacitidine). Low risk patients (IPSS low and int-1) mainly receive supportive therapy including iron chelation. An exceptional position is presented by MDS with an isolated 5q deletion as it can be treated with lenalidomide with good success. Enrolling patients in clinical trials is strongly recommended to improve the prospects of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Niemeyer CM, Baumann I (2011) Classification of childhood aplastic anemia and myelodysplastic syndrome. Hematology Am Soc Hematol Educ Program 2011:84–89

    Article  PubMed  Google Scholar 

  2. Aul C, Bowen DT, Yoshida Y (1998) Pathogenesis, etiology and epidemiology of myelodysplastic syndromes. Haematologica 83(1):71–86

    CAS  PubMed  Google Scholar 

  3. Malcovati L, Hellstrom-Lindberg E, Bowen D et al (2013) Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet. Blood 122(17):2943–2964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Strom SS, Gu Y, Gruschkus SK et al (2005) Risk factors of myelodysplastic syndromes: a case-control study. Leukemia 19(11):1912–1918

    Article  CAS  PubMed  Google Scholar 

  5. Welch JS, Ley TJ, Link DC et al (2012) The origin and evolution of mutations in acute myeloid leukemia. Cell 150(2):264–278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Enright H, Jacob HS, Vercellotti G et al (1995) Paraneoplastic autoimmune phenomena in patients with myelodysplastic syndromes: response to immunosuppressive therapy. Br J Haematol 91(2):403–408

    Article  CAS  PubMed  Google Scholar 

  7. Schlegelberger B, Gohring G, Thol F, Heuser M (2012) Update on cytogenetic and molecular changes in myelodysplastic syndromes. Leuk Lymphoma 53(4):525–536

    Article  CAS  PubMed  Google Scholar 

  8. Ebert BL, Pretz J, Bosco J et al (2008) Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451(7176):335–339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Starczynowski DT, Kuchenbauer F, Argiropoulos B et al (2010) Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med 16(1):49–58

    Article  CAS  PubMed  Google Scholar 

  10. Bejar R, Stevenson K, Abdel-Wahab O et al (2011) Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med 364(26):2496–2506

  11. Haferlach T, Nagata Y, Grossmann V et al (2014) Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 28(2):241–247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Papaemmanuil E, Gerstung M, Malcovati L et al (2013) Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122(22):3616–3627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Thol F, Kade S, Schlarmann C et al (2012) Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood 119(15):3578–3584

    Article  CAS  PubMed  Google Scholar 

  14. Malcovati L, Papaemmanuil E, Bowen DT et al (2011) Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood 118(24):6239–6246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Damm F, Thol F, Kosmider O et al (2012) SF3B1 mutations in myelodysplastic syndromes: clinical associations and prognostic implications. Leukemia 26(5):1137–1140

    Article  CAS  PubMed  Google Scholar 

  16. Papaemmanuil E, Cazzola M, Boultwood J et al (2011) Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 365(15):1384–1395

  17. Thol F, Friesen I, Damm F et al (2011) Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. J Clin Oncol 29(18):2499–2506

  18. Thol F, Winschel C, Ludeking A et al (2011) Rare occurrence of DNMT3A mutations in myelodysplastic syndromes. Haematologica 96(12):1870–1873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Jadersten M, Saft L, Smith A et al (2011) TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol 29(15):1971–1979

  20. Greenberg P, Cox C, LeBeau MM et al (1997) International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89(6):2079–2088

    CAS  PubMed  Google Scholar 

  21. Greenberg PL, Tuechler H, Schanz J et al (2012) Revised International Prognostic Scoring System (IPSS-R) for myelodysplastic syndromes. Blood 120(12):2454–2465

    Article  CAS  PubMed  Google Scholar 

  22. Malcovati L, Germing U, Kuendgen A et al (2007) Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J Clin Oncol 25(23):3503–3510

  23. Deschler B, Ihorst G, Platzbecker U et al (2013) Parameters detected by geriatric and quality of life assessment in 195 older patients with myelodysplastic syndromes and acute myeloid leukemia are highly predictive for outcome. Haematologica 98(2):208–216

    Article  PubMed Central  PubMed  Google Scholar 

  24. Hellstrom-Lindberg E, Gulbrandsen N, Lindberg G et al (2003) A validated decision model for treating the anaemia of myelodysplastic syndromes with erythropoietin  +  granulocyte colony-stimulating factor: significant effects on quality of life. Br J Haematol 120(6):1037–1046

    Article  CAS  PubMed  Google Scholar 

  25. Passweg JR, Giagounidis AA, Simcock M et al (2011) Immunosuppressive therapy for patients with myelodysplastic syndrome: a prospective randomized multicenter phase III trial comparing antithymocyte globulin plus cyclosporine with best supportive care – SAKK 33/99. J Clin Oncol 29(3):303–309

  26. List A, Dewald G, Bennett J et al (2006) Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med 355(14):1456–1465

  27. Sorror ML, Maris MB, Storb R et al (2005) Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood 106(8):2912–2919

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Onida F, Brand R, Biezen A van et al (2014) Impact of the International Prognostic Scoring System cytogenetic risk groups on the outcome of patients with primary myelodysplastic syndromes undergoing allogeneic stem cell transplantation from human leukocyte antigen-identical siblings: a retrospective analysis of the European Society for Blood and Marrow Transplantation-Chronic Malignancies Working Party. Haematologica 99(10):1582–1590

    Article  PubMed Central  PubMed  Google Scholar 

  29. Fenaux P, Mufti GJ, Hellstrom-Lindberg E et al (2009) Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 10(3):223–232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Bejar R, Lord A, Stevenson K et al (2014) TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood 124(17):2705–2712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. F. Thol gibt an, dass kein Interessenkonflikt besteht. M. Heuser: Forschungsunterstützung durch Boehringer-Ingelheim und Bayer. A. Ganser: Beratungsgremien von Celgene und Takeda.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Thol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thol, F., Heuser, M. & Ganser, A. Myelodysplastische Syndrome. Internist 56, 364–373 (2015). https://doi.org/10.1007/s00108-014-3598-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-014-3598-3

Schlüsselwörter

Keywords

Navigation