Skip to main content
Log in

Arzneitherapie solider Tumoren

Hoffnung und Frustration

Pharmacotherapy of solid tumors

New hopes and frustrations

  • Arzneimitteltherapie
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

In den vergangenen Jahren haben sich dramatische Neuerungen im Verständnis und der Behandlung solider Tumoren vollzogen. Basierend auf der Tumorbiologie wurden zielgerichtete Therapeutika entwickelt, die direkten Einfluss auf zugrunde liegende genetische und immunologische Veränderungen nehmen. Signifikante Verbesserungen des Überlebens sind der funktionelle Beweis der Wirksamkeit zielgerichteter und immunologischer Tumortherapien. Das Management und die Adhärenz des Patienten sowie die optimierte Kooperation mit den Klinikern sind entscheidend für das Therapieergebnis und die Kontrolle der Erkrankung.

An mehreren soliden Tumoren werden in aktuellen Studien (sequenzielle) Therapien mit zielgerichteten und immunologisch wirksamen Stoffen getestet, z. B. mit Tyrosinkinase- oder mTOR-Inhibitoren, zielgerichteten Antikörpern wie Bevacizumab, spezifischen Antagonisten wie Enzalutamid, und immunologischen Checkpoint-Inhibitoren wie PD-(L)1- und/oder CTLA-4-Antikörpern.

Die aktuell zugelassenen Wirkstoffe haben die Therapieoptionen insbesondere bei folgenden Tumoren erweitert: Prostatakarzinom (Hormontherapie mit Enzalutamid/Abirateronacetat, Radiotherapie mit Radium-223, Cabazitaxel), metastasiertes Mammakarzinom (Eribulin, Everolimus), Nierenzellkarzinom (Sunitinib, Sorafenib, Axitinib, Everolimus, Temsirolimus), nichtkleinzelliges Bronchialkarzinom (Crizotinib, Afatinib), kolorektales Karzinom und gastrointestinaler Stromatumor (Regorafenib) sowie Melanom (Ipilimumab, Vemurafenib). In die Behandlung von selteneren Tumorerkrankungen wie Pankreaskarzinomen, hepatozellulären Karzinomen und Weichteilsarkomen hält die zielgerichtete Therapie mit der Zulassung von nab-Paclitaxel, Sorafenib und Pazopanib Einzug. In aktuellen klinischen Studien werden die optimalen Therapiezeitpunkte und -sequenzen bestimmt und das Management dieser vielversprechenden Wirkstoffe wird verbessert.

Abstract

Recent years have seen dramatic changes in the biological understanding and treatment of solid tumors. Based on the tumor biology, targeting agents have been developed which directly affect the underlying genetic or immunological changes found in specific tumor entities. Significant increases in survival have delivered the functional proof of the concept of targeted and immunological tumor therapy. The management and adherence of the patient as well as optimized cooperation with clinicians are decisive for the results of therapy and disease control.

Several solid tumors are currently under investigation in clinical studies evaluating the (sequential) therapy with targeting and immunologically active agents, e.g. tyrosine kinase and mTOR inhibitors, targeting antibodies, such as bevacizumab, specific antagonists, such as enzalutamide and immunological checkpoint inhibitors via PD(L)1 and/or CTLA 4 antibodies.

Currently approved agents have dramatically changed the landscape of treatment options especially for prostate cancer. Such agents include hormone therapy with enzalutamide and abiraterone, radiotherapy with cabazitaxel and xofigo (radium 223), metastatic breast cancer (eribulin and everolimus), renal cell carcinoma (sunitinib, sorafenib, axitinib, everolimus and temsirolimus), non-small cell lung cancer (crizotinib and afatinib), colorectal cancer and gastrointestinal stromal tumor (regorafenib) and melanoma (ipilimumab and vemurafenib). The treatment of rarer tumors, such as pancreatic and hepatocellular cancer and soft tissue sarcoma has entered the stage of targeted therapy with the approval of nanoparticle albumin-bound (nab)-paclitaxel, sorafenib, and eribulin/pazopanib. Current clinical trials are focusing on the best time point and sequence of therapy and also improvement in the management of these promising agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Abou-Alfa GK, Venook AP (2013) The antiangiogenic ceiling in hepatocellular carcinoma: does it exist and has it been reached? Lancet Oncol 14:e283–e288

    Article  PubMed  CAS  Google Scholar 

  2. Ackerman A, Klein O, McDermott DF et al (2014) Outcomes of patients with metastatic melanoma treated with immunotherapy prior to or after BRAF inhibitors. Cancer 120:1695–1701

    Article  PubMed  CAS  Google Scholar 

  3. Ang C, O’Reilly EM, Abou-Alfa GK (2013) Targeted agents and systemic therapy in hepatocellular carcinoma. Recent Results Cancer Res 190:225–246

    Article  PubMed  Google Scholar 

  4. Aranda F, Vacchelli E, Eggermont A et al (2014) Trial watch: immunostimulatory monoclonal antibodies in cancer therapy. Oncoimmunology 3:e27297

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bahl A, Masson S, Birtle A et al (2014) Second-line treatment options in metastatic castration-resistant prostate cancer: a comparison of key trials with recently approved agents. Cancer Treat Rev 40:170–177

    Article  PubMed  CAS  Google Scholar 

  6. Bergmann L, Beck J, Bothe K et al (2014) Treatment algorithm for metastatic renal cell carcinoma – recommendations based on evidence and clinical practice. Oncol Res Treat 37:136–141

    Article  PubMed  CAS  Google Scholar 

  7. Brady D, Parker CC, O’Sullivan JM (2013) Bone-targeting radiopharmaceuticals including radium-223. Cancer J 19:71–78

    Article  Google Scholar 

  8. Buti S, Bersanelli M, Sikokis A et al (2013) Chemotherapy in metastatic renal cell carcinoma today? A systematic review. Anticancer Drugs 24:535–554

    PubMed  CAS  Google Scholar 

  9. Chen YM (2013) Update of epidermal growth factor receptor-tyrosine kinase inhibitors in non-small-cell lung cancer. J Chin Med Assoc 76:249–257

  10. Dhillon S (2013) Everolimus in combination with exemestane: a review of its use in the treatment of patients with postmenopausal hormone receptor-positive, HER2-negative advanced breast cancer. Drugs 73:475–485

    Article  PubMed  CAS  Google Scholar 

  11. Freiwald M, Schmid U, Fleury A et al (2014) Population pharmacokinetics of afatinib, an irreversible ErbB family blocker, in patients with various solid tumors. Cancer Chemother Pharmacol 73:759–770

    Article  CAS  Google Scholar 

  12. Grothey A, Van Cutsem E, Sobrero A et al (2013) Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381:303–312

    Article  PubMed  CAS  Google Scholar 

  13. Hauschild A, Grob JJ, Demidov LV et al (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380:358–365

    Article  PubMed  CAS  Google Scholar 

  14. Khan G, Moss RA, Braiteh F, Saltzman M (2014) Proactive strategies for regorafenib in metastatic colorectal cancer: implications for optimal patient management. Cancer Manag Res 6:93–103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Kudlowitz D, Muggia F (2014) Nanoparticle albumin-bound paclitaxel (nab-paclitaxel): extending its indications. Expert Opin Drug Saf 13:681–685

    PubMed  Google Scholar 

  16. Kyi C, Postow MA (2014) Checkpoint blocking antibodies in cancer immunotherapy. FEBS Lett 588:368–376

    Article  PubMed  CAS  Google Scholar 

  17. Martin-Liberal J, Benson C, Judson I (2014) New drugs in sarcomas. Expert Opin Pharmacother 15:221–229

    Article  PubMed  CAS  Google Scholar 

  18. Maute L, Grunwald V, Weikert S et al (2014) Therapy of mRCC beyond mTOR-inhibition in clinical practice: results of a retrospective analysis. J Cancer Res Clin Oncol 140:823–827

  19. McArthur GA, Chapman PB, Robert C et al (2014) Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol 15:323–332

    Article  PubMed  CAS  Google Scholar 

  20. McDermott D, Haanen J, Chen TT et al (2013) Efficacy and safety of ipilimumab in metastatic melanoma patients surviving more than 2 years following treatment in a phase III trial (MDX010–20). Ann Oncol 24:2694–2698

    Article  PubMed  CAS  Google Scholar 

  21. Mouhayar E, Durand JB, Cortes J (2013) Cardiovascular toxicity of tyrosine kinase inhibitors. Expert Opin Drug Saf 12:687–696

    Article  PubMed  CAS  Google Scholar 

  22. O’Bryant CL, Wenger SD, Kim M, Thompson LA (2013) Crizotinib: a new treatment option for ALK-positive non-small cell lung cancer. Ann Pharmacother 47:189–197

    Article  Google Scholar 

  23. Ott PA, Hodi FS, Robert C (2013) CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res 19:5300–5309

    Article  PubMed  CAS  Google Scholar 

  24. Saji S (2013) Evolving approaches to metastatic breast cancer patients pre-treated with anthracycline and taxane. BioDrugs 27:469–478

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Schulze M, Stock C, Zaccagnini M et al (2014) Temsirolimus. Recent Results Cancer Res 201:393–403

    Article  PubMed  Google Scholar 

  26. Sebastian M, Schmittel A, Reck M (2014) First-line treatment of EGFR-mutated nonsmall cell lung cancer: critical review on study methodology. Euro Res Rev 23:92–105

    Article  Google Scholar 

  27. Serrano C, George S (2014) Recent advances in the treatment of gastrointestinal stromal tumors. Ther Adv Med Oncol 6:115–127

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

  29. Vacchelli E, Aranda F, Eggermont A et al (2014) Trial watch: tumor-targeting monoclonal antibodies in cancer therapy. Oncoimmunology 3:e27048

    Article  PubMed  PubMed Central  Google Scholar 

  30. Von Hoff DD, Ervin T, Arena FP et al (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369:1691–1703

  31. Zagouri F, Sergentanis TN, Chrysikos D et al (2013) Molecularly targeted therapies in metastatic pancreatic cancer: a systematic review. Pancreas 42:760–773

    Article  PubMed  CAS  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. M. Rickmann wurde von der Firma Bayer durch die Übernahme von Reisekosten unterstützt. V. Grünwald gibt an, dass kein Interessenkonflikt besteht. V. Grünwald: Honorar: GSK, Novartis, Merck Serono, Bayer, Boehringer Ingelheim, Pfizer, Astellas, BMS. Beratertätigkeit: GSK, Novartis, Merck Serono, Pfizer, Astellas, Mologen. Reisekosten: Merck Serono, Novartis, Pfizer, Bayer. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rickmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grünwald, V., Rickmann, M. Arzneitherapie solider Tumoren. Internist 55, 1220–1227 (2014). https://doi.org/10.1007/s00108-014-3553-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-014-3553-3

Schlüsselwörter

Keywords

Navigation