Skip to main content
Log in

Fungal colonisation and moisture uptake of torrefied wood, charcoal, and thermally treated pellets during storage

  • Original
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

Storage is a challenging stage in the supply chain of any solid biofuel, as they readily absorb moisture. Increased moisture content (MC) bears many negative consequences, such as biological degradation, reduced heating value and worker health problems. A five-month storage trial served to determine how certain properties of torrefied wood, charcoal and thermally treated pellets change when exposed to natural weathering in a covered and uncovered storage area. Biological degradation and changes in MC and composition were recorded. The pellets also underwent a durability test. Different fungi were isolated from the stored samples and the genus of selected isolates was identified with internal transcribed spacer polymerase chain reaction. Significant changes were detected in the carbon content of the wood material following the trial. The samples in the uncovered storage area had absorbed substantial amounts of water and, after incubation, 99 % of these samples showed visible fungal growth, compared to only 20 % of the covered samples. The pellets showed varying responses to storage in terms of durability and moisture absorption, with the steam explosion pellets possessing more favourable properties than torrefied and untreated pellets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Assarsson A, Croon I, Frisk E (1970) Outside chip storage (OCS). Sven Papperstid 16:493–501

    Google Scholar 

  • Barontini M, Crognale S, Scarfone A, Gallo P, Gallucci F, Petrucciolli M et al (2014) Airborne fungi in biofuel wood chip storage sites. Int Biodeter Biodegr 90:17–22

    Article  CAS  Google Scholar 

  • Bergman PCA (2005) Combined torrefaction and pelletization—the TOP process. ECN-C—05-073

  • Bergman Ö, Nilsson T (1967) Studier över utomhuslagring av tallvedsflis vid Lövholmens pappersbruk (Studies of outside storage of pine wood chips at Lövholm papermill). Skoghögskolan, Institut för virkeslära. Rapporter N:o R55, Stockholm (In Swedish)

  • Bergman PCA, Boersma AR, Zwart RWR, Kiel JHA (2005) Torrefaction for biomass co-firing in existing coal-fired power stations. “BIOCOAL” ECN-C–05-013

  • Bhuiyan TR, Hirai N, Sbue N (2000) Changes in crystallinity in wood cellulose by heat treatment under dried and moist conditions. J Wood Sci 46:431–436

    Article  CAS  Google Scholar 

  • Björk H, Rasmuson A (1995) Moisture equilibrium of wood and bark chips in superheated steam. Fuel 74(12):1887–1890

    Article  Google Scholar 

  • Bush RK, Portnoy JM, Saxon A, Terr AI, Wood RA (2006) The medical effects of mold exposure. J Allergy Clin Immunol 117(2):326–333

    Article  PubMed  Google Scholar 

  • CEN/TS 15210-1:2010 – Solid biofuels (2010) Method for the determination of mechanical durability of pellets and briquettes. Pellets

  • Diehl SV (1998) Respiratory health problems associated with worker exposure to fungi on wood. Tappi J 81(5):115–118

    CAS  Google Scholar 

  • Dix NJ, Webster J (1995) Fungal ecology. Chapman & Hall, London

    Book  Google Scholar 

  • Duncan CG, Eslyn WE (1966) Wood-decaying ascomycetes and Fungi Imperfecti. Mycologia 58(4):642–645

    Article  Google Scholar 

  • Eveleigh DE (1961) The disfiguration of painted surfaces by fungi, with special reference to Phoma violaceae. Ann Appl Biol 49:403–411

    Article  CAS  Google Scholar 

  • Forsberg G (2000) Biomass energy transport: analysis of bioenergy transport chains using life cycle inventory method. Biomass Bioenerg 19:17–30

    Article  CAS  Google Scholar 

  • Green BJ, Mitakakis TZ, Tovey ER (2003) Allergen detection from 11 fungal species before and after germination. J Allergy Clin Immunol 111(2):285–289

    Article  PubMed  Google Scholar 

  • Hamelinck CN, Suurs RAA, Faaij APC (2005) International bioenergy transport costs and energy balance. Biomass Bioenerg 29:114–134

    Article  Google Scholar 

  • Järvinen T, Agar D (2014) Experimentally determined storage and handling properties of fuel pellets made from torrefied whole-tree pine chips, logging residues and beech stem wood. Fuel 129:330–339

    Article  Google Scholar 

  • Jirjis R (1995) Storage and drying of wood fuel. Biomass Bioenerg 9(l-5):181–190

    Article  Google Scholar 

  • Johansson J, Liss J-E, Gullberg T, Björheden R (2006) Transport and handling of forest energy bundles—advantages and problems. Biomass Bioenerg 30:334–341

    Article  Google Scholar 

  • Kiel JHA, Verhoeff F, Gerhauser H, Meuleman B (2008) BO2-technology for biomass upgrading into solid fuel—pilot scale testing and market implementation. ECN-M—08-036

  • Kymäläinen M, Havimo M, Louhelainen J (2014a) Sorption properties of torrefied wood and charcoal. Wood Mater Sci Eng 9(3):170–178

    Article  Google Scholar 

  • Kymäläinen M, Havimo M, Keriö M, Kemell S, Solio J (2014b) Biological degradation of torrefied wood and charcoal. Biomass Bioenerg 71:170–177

    Article  Google Scholar 

  • Lam PS, Sokhansaj S, Bi XT, Lim JC, Larsson SH (2012) Drying characteristics and equilibrium moisture content of steam-treated Douglas fir (Pseudotsuga menziensii L.). Bioresour Technol 116:369–402

    Article  Google Scholar 

  • Larsson SH, Rudolfsson M, Nordwaeger M, Olofsson I, Samuelsson R (2013) Effects of moisture content, torrefaction temperature, and die temperature in pilot scale pelletizing of torrefied Norway spruce. Appl Energy 102:827–832

    Article  Google Scholar 

  • Lehtikangas P (2000) Storage effects of pelletised sawdust, logging residues and bark. Biomass Bioenerg 19:287–293

    Article  Google Scholar 

  • Li H, Liu X, Legros R, Bi XT, Lim JC, Sokhansaj S (2012) Pelletization of torrefied sawdust and properties of torrefied pellets. Appl Energy 93:680–685

    Article  CAS  Google Scholar 

  • Medic D, Darr M, Shah A, Rahn S (2012) Effect of torrefaction on water vapor adsorption and resistance to microbial degradation of corn stover. Energy Fuels 26:2386–2393

    Article  CAS  Google Scholar 

  • Nilsson T (1965) Mikroorganismer i flisstackar (Microorganisms in chip piles). Sven Papperstid 68(15):495–499 (In Swedish)

    Google Scholar 

  • Nilsson RH, Tedersoo L, Abarenkov T, Ryberg M, Kristiansson E, Hartmann M et al (2012) Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys 4:37–63

    Article  Google Scholar 

  • Peng JH, Bi HT, Sokhansaj S, Lim JC (2012) A study of particle size effect on biomass torrefaction and densification. Energy Fuels 26:3826–3839

    Article  CAS  Google Scholar 

  • Peng JH, Bi HT, Lim CJ, Sokhansaj S (2013) Study on density, hardness and moisture uptake of torrefied wood pellets. Energy Fuels 27:967–974

    Article  CAS  Google Scholar 

  • Rytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP, Mäkelä MR (2014) Plant polysaccharide degrading enzymes from basidiomycetes. Microbiol Mol Biol Rev 78(4):614–649

    Article  PubMed  Google Scholar 

  • Seifert KA (2009) Progress towards DNA barcoding of fungi. Mol Ecol Resour 9(1):81–89

    Google Scholar 

  • Sivonen H, Maunu SL, Sundholm F, Jämsä S, Viitaniemi P (2002) Magnetic resonance studies of thermally modified wood. Holzforschung 56:648–654

    Article  CAS  Google Scholar 

  • Smith SN (2007) An overview of ecological and habitat aspects in the genus Fusarium with special emphasis on the soil-borne pathogenic forms. Plant pathol Bull 16:97–120

    Google Scholar 

  • Stelte, W (2012) Guideline: Storage and handling of wood pellets. Resultat Kontrakt (RK) report. Danish technological institute, Energy and climate, Centre for renewable energy and transport, section for biomass

  • Stelte W, Clemons C, Holm JK, Sanadi AR, Ahrenfeldt J, Shang L et al (2011) Pelletizing properties of torrefied spruce. Biomass Bioenerg 35:4690–4698

    Article  CAS  Google Scholar 

  • Svanberg M, Halldórsson A (2013) Supply chain configuration for biomass to energy: the case of torrefaction. Int J Energy Sect Manag 7(1):65–83

    Article  Google Scholar 

  • Van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenerg 35(9):3748–3762

    Google Scholar 

  • Verhoeff F, Pels JR, Boersma AR, Zwart RWR, Kiel JHA (2011) ECN torrefaction technology heading for demonstration. Presented in 19th European Biomass Conference and Exhibition, 6–10 June 2011, Berlin, Germany

  • Washburn RG (1996) Opportunistic mold infections. In: Howard DH, Miller JD (eds) The Mycota: human and animal relationships, vol VI. Springer, Berlin, pp 147–158

    Chapter  Google Scholar 

  • White TJ, Burns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic press Inc, New York, pp 315–322

    Google Scholar 

  • Yan W, Acharjee TC, Coronella CJ, Vásquez VR (2009) Thermal pretreatment of lignocellulosics biomass. Environ Prog Sustain Energy 28(3):435–440

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Maija Kymäläinen is grateful to the International Doctoral Programme in Bioproducts Technology (PaPSaT) and the Walter Ahlström foundation for their financial support, and also gratefully acknowledges Hannu Rita, Pekka Oivanen, Marjut Wallner and Juha Solio for the help and expertise they provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kymäläinen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kymäläinen, M., Mäkelä, M.R., Hildén, K. et al. Fungal colonisation and moisture uptake of torrefied wood, charcoal, and thermally treated pellets during storage. Eur. J. Wood Prod. 73, 709–717 (2015). https://doi.org/10.1007/s00107-015-0950-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-015-0950-9

Keywords

Navigation