Skip to main content
Log in

Assessment of phenomenological failure criteria for wood

Beurteilung der phänomenologischen Versagenskriterien von Holz

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

Many different phenomenological failure criteria have been proposed. These type of criteria do not explain the mechanism of failure itself. They merely identify failure (yes or no) and are usually regarded in practice as a simple and reliable tool for design. Most of them were developed for composite materials, but are extensively applied for wood. In this study, existing phenomenological strength criteria for orthotropic materials were applied to clear wood data. Instead of fitting the criteria to available experimental data, the criteria were used to predict failure of biaxial tests based on uniaxial strength. This procedure is closer to practice, and hence an answer to the question “is there any reliable failure criterion for wood?” Predictability of the criteria was assessed using normalisation procedure, and statistical significance of the difference of the means analysed. Based on the results, it can be concluded that a general criterion cannot be applied to predict failure, but should be chosen according to the biaxial stress state.

Zusammenfassung

In der Literatur werden viele verschiedene phänomenologische Versagenskriterien beschrieben, die jedoch nicht den Versagensmechanismus selber erklären, sondern nur den Bruch identifizieren (ja oder nein). In der Praxis werden diese Kriterien in der Regel als einfaches und zuverlässiges Werkzeug für die Bemessung angesehen. Die meisten der Kriterien wurden für Verbundwerkstoffe entwickelt, werden aber zunehmend auf Holz angewandt. In dieser Studie werden bestehende phänomenologische Versagenskriterien für orthotrope Werkstoffe auf fehlerfreies Holz angewendet. Das Modell wurde nicht an die vorhandenen Versuchswerte angepasst, sondern die Kriterien wurden dazu verwendet, um den Bruch von zweiaxialen Versuchen mittels einaxialen Festigkeitswerten zu bestimmen. Dieses Verfahren ist praxisnäher und liefert somit eine Antwort auf die Frage, „Gibt es ein zuverlässiges Versagenskriterium für Holz?“ Die Vorhersagbarkeit der Modelle wurde anhand normalisierter Abweichungen von den Versuchswerten und statistischer Signifikanz analysiert. Aus den Ergebnissen kann geschlossen werden, dass es für Holz kein allgemeines Versagenskriterium gibt, sondern nach dem Spannungszustand gewählt werden sollte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6
Fig. 7 Abb. 7
Fig. 8 Abb. 8
Fig. 9 Abb. 9

Similar content being viewed by others

References

  • Aicher S, Klöck W (2001) Linear versus quadratic failure criteria for in-plane loaded wood based panels. Otto-Graff-Journal 12:187–199

    Google Scholar 

  • Azzi VD, Tsai SW (1965) Anisotropic strength of composites. Exp Mech 5(9):283–288

    Article  Google Scholar 

  • Bodig J, Jayne BA (1982) Mechanics of wood and wood composites. Van Nostrand Reinhold, New York

    Google Scholar 

  • Cabrero JM, Heiduschke A, Haller P (2010) Analytical assessment of the load carrying capacity of axially loaded wooden reinforced tubes. Compos Struct 92(12):2955–2965

    Article  Google Scholar 

  • Clouston PL, Lam F (2001) Computational modeling of strand-based wood composites. J Eng Mech 127(8):844–851

    Article  Google Scholar 

  • Cowin SC (1979) On the strength anisotropy of bone and wood. Transactions of the ASME. J Appl Mech 46(4):832–838

    Article  Google Scholar 

  • de Ruvo A, Carlsson L, Fellers C (1980) The biaxial strength of paper. Tappi 63(5):133–136

    Google Scholar 

  • Eberhardsteiner J (2002) Mechanisches Verhalten von Fichtenholz. Springer, Vienna

    Book  Google Scholar 

  • Ehlbeck J, Hemmer K (1986) Erfassung, systematische Auswertung und Ermittlung von Grundlagen über das Zusammenwirken von Längs-, Quer- und Schubspannungen bei fehlerfreiem und fehlerbehaftetem Nadelholz. Forschungsvorhaben Nr. 5764. IRB Verlag, Stuttgart

    Google Scholar 

  • Feiler M (2001) Experimentelle und numerische Untersuchungen an kraftflussgerechten Gelegen zur Verstärkung von stabförmigen Verbindungsmittel: Master’s thesis. Technische Universität Dresden, Germany

  • Gol’denblat I, Kopnov VA (1965) Strength of glass-reinforced plastics in the complex stress state. Polym Mech 1(2):54–59

    Article  Google Scholar 

  • Hankinson RL (1921) Investigation on crushing strength of spruce at varying angles of grain. Material Section Report, No. 130 259, Air service information circular, Vol. 3, No. 259, McCook Field, Dayton

  • Hemmer K (1984) Versagensarten des Holzes der Weisstanne (Abies alba) unter mehrachsiger Beanspruchung, PhD thesis. Karlsruhe

  • Hill R (1950) The mathematical theory of plasticity. Oxford University Press, London

    Google Scholar 

  • Hinton MJ, Kaddour AS (2007) The second world wide failure exercise: benchmarking of failure criteria under triaxial stresses for fibre-reinforced polymer composites. In: 16th international conference on composite materials

  • Hinton MJ, Kaddour AS, Soden PD (eds) (2004a) Failure criteria in fiber reinforced polymer composites: the world-wide failure exercise. Elsevier, Amsterdam

  • Hinton MJ, Kaddour AS, Soden PD (eds) (2004b) The world-wide failure exercise: Its origin, concept and content. In: Failure criteria in fiber reinforced polymer composites: the world wide failure exercise. Elsevier, Amsterdam, pp 2–28

  • Hoffman O (1967) The brittle strength of orthotropic materials. J Compos Mater 1:200–206

    Article  Google Scholar 

  • Kaddour AS, Hinton MJ, Li S, Smith PA (2007) Damage theories for fibre-reinforced polymer composites: the third world-wide failure exercise (WWFE-III). In: 16th international conference on composite materials

  • Kasal B (1992) A nonlinear three-dimensional finite-element model of a light-frame wood structure: PhD thesis. Oregon State University, USA

    Google Scholar 

  • Kasal B, Heiduschke A (2004) Radial reinforcement of curved laminated beams. Forest Prod J 54(1):74–79

    Google Scholar 

  • Kasal B, Leichti RJ (2005) State of the art in multiaxial phenomenological failure criteria for wood members. Prog Struct Mat Eng 7:3–13

    Article  Google Scholar 

  • Kim D-H (1995) Composite structures for civil and architectural engineering. E & FN Spon Press, London

    Google Scholar 

  • Malmeister AK (1966) Geometry of theories of strength. Polym Mech 2(4):324–331

    Article  Google Scholar 

  • Norris CB (1950) Strength of orthotropic materials subjected to combined stress. Technical Report 1816, U.S. Forest Products Laboratory

  • Rowlands RE (1985) Failure Mechanics of Composites, chapter Strength (failure) theories. In: Handbook of Composites, vol. 3. Elsevier Science Publishers, Amsterdam, pp 71–126

  • Rowlands RE, Gunderson DE, Suhling JC, Johnson MW (1985) Biaxial strength of paperboard predicted by hill-type theories. J Strain Anal 2:121–127

    Article  Google Scholar 

  • Smith I, Landis E, Gong M (2003) Fracture and fatigue in wood. Wiley, New York

    Google Scholar 

  • Spengler R (1982) Ermittlung des Festigkeitsverhalten von Brettelementen aus Fichte unter zweiachsiger Beanspruchung durch Versuche. Technische Universität München: Berichte zur Zuverlässigkeitstheorie der Bauwerke, Heft 62, p 63

  • Suhling JC, Rowlands RE, Johnson MW, Gunderson DE (1985) Tensorial strength analysis of paperboard. Exp Mech 25(1):75–84

    Article  Google Scholar 

  • Tennyson RC, MacDonald D, Nanyaro AP (1978) Evaluation of the tensor polynomial failure criterion for composite materials. J Compos Mater 12:63–75

    Article  CAS  Google Scholar 

  • Tsai SW (1988) Composite Design. Think Composites, Dayton, 4 edn

  • Tsai SW (1992) Theory of composites design. Think Composites, Dayton

    Google Scholar 

  • Van der Put TACM (2005) The tensor polynomial failure criterion for wood. Delft Wood Science Foundation, Delft

  • Von Mises R (1928) Mechanik der plastischen Formänderung von Kristallen. Angewandte Mathematik und Mechanik 8:161–185

    Article  Google Scholar 

  • Williams JM, Fridley KJ, Cofer WF, Falk RH (2000) Failure modeling of sawn lumber with a fastener hole. Finite Elem Anal Des 6:83–98

    Article  Google Scholar 

  • Wu EM (1972) Optimal experimental measurements of anisotropic failure tensors. J Compos Mater 6:472–489

    Google Scholar 

Download references

Acknowledgments

The support provided by the PIUNA Research Program of the University of Navarra for this work is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Cabrero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabrero, J.M., Blanco, C., Gebremedhin, K.G. et al. Assessment of phenomenological failure criteria for wood. Eur. J. Wood Prod. 70, 871–882 (2012). https://doi.org/10.1007/s00107-012-0638-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-012-0638-3

Keywords

Navigation