Skip to main content
Log in

Adjuvanzien

Adjuvants

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Geschätzt wird, dass etwa 5 % aller Patienten, die prinzipiell von einer spezifischen Immuntherapie (SIT) profitieren können, tatsächlich einer SIT unterzogen werden. Dabei ist die SIT derzeit die einzige kurative Therapie mit der Toleranz bei individueller Allergie, insbesondere gegen Aeroallergene und Insektengifte, erzeugt werden kann. Therapeutika, mit denen in möglichst kurzen Therapieprotokollen Allergien hochwirksam und sicher behandelt werden können, sind das Ziel neuer Entwicklungen. Adjuvanzien sind pharmakologische und/oder immunologische wirksame Moleküle, die die spezifische immunologische Antwort gegen Antigene modifizieren können. In der Impftechnologie werden Adjuvanzien bereits breit eingesetzt, um die Immunogenität hochgereinigter, wenig immunstimulierender Antigene zu erhöhen. Dabei können Adjuvanzien auf eine verlängerte Antigenexposition oder eine Modulation der Immunantwort abzielen oder auch als Vektorsysteme dienen, mit denen Allergene und Adjuvanzien gezielt an Zielzellen transportiert werden können.

Abstract

It is estimated that only 5% of all patients who can principally benefit from specific immunotherapy (SIT) undergo this treatment. SIT represents the only curative treatment for allergic disorders and efficacy has been demonstrated with various allergens. There is an urgent demand for the development of safe preparations with enhanced efficacy achievable by only a few administrations. Adjuvants are pharmacological or immunological acting molecules modifying the specific immunological response to allergens. In vaccine technology, adjuvants are broadly used to enhance immunogenicity of highly purified antigens with low immune stimulating activity. Adjuvants may target to a retarded allergen release, a modulation of the immune system, or can be used as vector systems to transport allergens and adjuvants effectively to target cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literatur

  1. Şahin E, Bafaqeeh SA, Güven SG, Çetinkaya EA, Muluk NB, Coşkun ZO et al (2016) Mechanism of action of allergen immunotherapy. Am J Rhinol Allergy 30:1–3

    PubMed  Google Scholar 

  2. Durham SR, Creticos PS, Nelson HS, Li Z, Kaur A, Meltzer EO et al (2016) Treatment effect of sublingual immunotherapy tablets and pharmacotherapies for seasonal and perennial allergic rhinitis: Pooled analyses. J Allergy Clin Immunol 138:1081–1088.e4

    Article  CAS  PubMed  Google Scholar 

  3. Demoly P, Emminger W, Rehm D, Backer V, Tommerup L, Kleine-Tebbe J (2016) Effective treatment of house dust mite – induced allergic rhinitis with 2 doses of the SQ HDM SLIT-tablet: results from a randomized, double-blind, placebo-controlled phase III trial. J Allergy Clin Immunol 137:444–451.e8

    Article  CAS  PubMed  Google Scholar 

  4. Okamoto Y, Fujieda S, Okano M, Yoshida Y, Kakudo S, Masuyama K (2016) House dust mite sublingual tablet is effective and safe in patients with allergic rhinitis. Allergy 29. doi:10.1111/all.12996

  5. Okubo K, Masuyama K, Imai T, Okamiya K, Stage BS, Seitzberg D et al (2016) Efficacy and safety of the SQ house dust mite SLIT-tablet in Japanese adults and adolescents with house dust mite-induced allergic rhinitis. J Allergy Clin Immunol. doi:10.1016/j.jaci.2016.09.043

    PubMed  Google Scholar 

  6. Pfaar O, Nell MJ, Boot JD, Versteeg SA, van Ree R, Roger A et al (2016) A randomized, 5‑arm dose finding study with a mite allergoid SCIT in allergic rhinoconjunctivitis patients. Allergy 71:967–976

    Article  CAS  PubMed  Google Scholar 

  7. De Gregorio E, Rappuoli R (2014) From empiricism to rational design: a personal perspective of the evolution of vaccine development. Nat Rev Immunol 14:505–514

    Article  PubMed  Google Scholar 

  8. Banday AH, Jeelani S, Hruby VJ (2015) Cancer vaccine adjuvants – recent clinical progress and future perspectives. Immunopharmacol Immunotoxicol 37:1–11

    Article  CAS  PubMed  Google Scholar 

  9. Hutchison S, Benson RA, Gibson VB, Pollock AH, Garside P, Brewer JM (2012) Antigen depot is not required for alum adjuvanticity. FASEB J 26:1272–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liang F, Loré K (2016) Local innate immune responses in the vaccine adjuvant-injected muscle. Clin Transl Immunol 5:e74

    Article  Google Scholar 

  11. Rask C, Lund L, Lund G, Heydenreich B, Wurtzen P, Bellinghausen I et al (2012) An alternative allergen:adjuvant formulation potentiates the immunogenicity and reduces allergenicity of a novel subcutaneous immunotherapy product for treatment of grass-pollen allergy. Clin Exp Allergy 42:1356–1368

    Article  CAS  PubMed  Google Scholar 

  12. Kleine-Tebbe J, Walmar M, Bitsch-Jensen K, Decot E, Pfaar O, de Rojas DHF et al (2014) Negative clinical results from a randomised, double-blind, placebo-controlled trial evaluating the efficacy of two doses of immunologically enhanced, grass subcutaneous immunotherapy despite dose-dependent immunological response. Clin Drug Investig 34:577–586

    Article  CAS  PubMed  Google Scholar 

  13. Jensen-Jarolim E (2015) Aluminium in allergies and allergen immunotherapy. World Allergy Organ J 8:7

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chesné J, Schmidt-Weber CB, Esser von-Bieren J (2016) The use of adjuvants for enhancing allergen immunotherapy efficacy. Immunol Allergy Clin North Am 36:125–145

    Article  PubMed  Google Scholar 

  15. PEI. No Title. http://www.pei.de/DE/arzneimittelsicherheit-vigilanz/archiv-sicherheitsinformationen/2014/ablage2014/2014-01-21-sicherheitsbewertung-von-aluminium-in-therapieallergenen.html. Zugegriffen: 24.01.2017

  16. Rosewich M, Lee D, Zielen S (2013) Pollinex Quattro: an innovative four injections immunotherapy In allergic rhinitis. Hum Vaccin Immunother 9:1523–1531

    Article  CAS  PubMed  Google Scholar 

  17. Leuthard D, Weiss S, Freiberger SN, Duda A, Heath MD, Skinner MA, Kramer MF, Kundig T, Johansen P (2016) Microcrystalline tyrosine as an adjuvant in allergy immunotherapy: a mouse study. Allergy 71:325

    Google Scholar 

  18. Baldrick P, Richardson D, Wheeler AW (2002) Review ofL-tyrosine confirming its safe human use as an adjuvant. J Appl Toxicol 22:333–344

    Article  CAS  PubMed  Google Scholar 

  19. Masson J‑D, Thibaudon M, Bélec L, Crépeaux G (2016) Calcium phosphate: a substitute for aluminum adjuvants? Expert Rev Vaccines:. doi:10.1080/14760584.2017.1244484

  20. Jones S, Asokanathan C, Kmiec D, Irvine J, Fleck R, Xing D et al (2014) Protein coated microcrystals formulated with model antigens and modified with calcium phosphate exhibit enhanced phagocytosis and immunogenicity. Vaccine 32:4234–4242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT (2012) PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 249:158–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aryan Z, Holgate ST, Radzioch D, Rezaei N (2014) A new era of targeting the ancient gatekeepers of the immune system: toll-like agonists in the treatment of allergic rhinitis and asthma. Int Arch Allergy Immunol 164:46–63

    Article  CAS  PubMed  Google Scholar 

  23. Di Pasquale A, Preiss S, Tavares Da Silva F, Garçon N (2015) Vaccine Adjuvants: from 1920 to 2015 and Beyond. Vaccines (Basel) 3:320–343

    Article  Google Scholar 

  24. Xu L‑Z, Yang L‑T, Qiu S‑Q, Yang G, Luo X‑Q, Miao B‑P et al (2016) Combination of specific allergen and probiotics induces specific regulatory B cells and enhances specific immunotherapy effect on allergic rhinitis. Oncotarget. doi:10.18632/oncotarget.10946

    Google Scholar 

  25. Jerzynska J, Stelmach W, Balcerak J, Woicka-Kolejwa K, Rychlik B, Blauz A et al (2016) Effect of Lactobacillus rhamnosus GG and vitamin D supplementation on the immunologic effectiveness of grass-specific sublingual immunotherapy in children with allergy. Allergy Asthma Proc 37:324–334

    Article  PubMed  Google Scholar 

  26. Tang MLK, Ponsonby A‑L, Orsini F, Tey D, Robinson M, Su EL et al (2015) Administration of a probiotic with peanut oral immunotherapy: a randomized trial. J Allergy Clin Immunol 135:737–744.e8

    Article  CAS  PubMed  Google Scholar 

  27. Palomares O, Yaman G, Azkur AK, Akkoc T, Akdis M, Akdis CA (2010) Role of treg in immune regulation of allergic diseases. Eur J Immunol 40:1232–1240

    Article  CAS  PubMed  Google Scholar 

  28. Wheeler AW, Marshall JS, Ulrich JT (2001) A Th1-inducing adjuvant, MPL, enhances antibody profiles in experimental animals suggesting it has the potential to improve the efficacy of allergy vaccines. Int Arch Allergy Immunol 126:135–139

    Article  CAS  PubMed  Google Scholar 

  29. Patel P, Holdich T, Fischer von Weikersthal-Drachenberg KJ, Huber B (2014) Efficacy of a short course of specific immunotherapy in patients with allergic rhinoconjunctivitis to ragweed pollen. J Allergy Clin Immunol 133:121–129.e2

    Article  PubMed  Google Scholar 

  30. Allam J‑P, Peng W‑M, Appel T, Wenghoefer M, Niederhagen B, Bieber T et al (2008) Toll-like receptor 4 ligation enforces tolerogenic properties of oral mucosal Langerhans cells. J Allergy Clin Immunol 121:368–374.e1

    Article  CAS  PubMed  Google Scholar 

  31. Hayashi T, Raz E (2006) TLR9-based immunotherapy for allergic disease. Am J Med 119:897.e1–897.e6

    Article  Google Scholar 

  32. Wilson HL, Dar A, Napper SK, Marianela Lopez A, Babiuk LA, Mutwiri GK (2006) Immune mechanisms and therapeutic potential of CpG oligodeoxynucleotides. Int Rev Immunol 25:183–213

    Article  CAS  PubMed  Google Scholar 

  33. Creticos PS, Schroeder JT, Hamilton RG, Balcer-Whaley SL, Khattignavong AP, Lindblad R et al (2006) Immunotherapy with a ragweed-toll-like receptor 9 agonist vaccine for allergic rhinitis. N Engl J Med 355:1445–1455

    Article  CAS  PubMed  Google Scholar 

  34. Senti G, Johansen P, Haug S, Bull C, Gottschaller C, Müller P et al (2009) Use of A‑type CpG oligodeoxynucleotides as an adjuvant in allergen-specific immunotherapy in humans: a phase I/IIa clinical trial. Clin Exp Allergy 39:562–570

    Article  CAS  PubMed  Google Scholar 

  35. Johansen P, Senti G, Martinez Gomez JM, Storni T, Beust BR, Wuthrich B et al (2005) Toll-like receptor ligands as adjuvants in allergen-specific immunotherapy. Clin Exp Allergy 35:1591–1598

    Article  CAS  PubMed  Google Scholar 

  36. Pratesi S, Nencini F, Filì L, Occhiato EG, Romagnani S, Parronchi P et al (2016) Dermatophagoides pteronyssinus group 2 allergen bound to 8‑OH modified adenine reduces the Th2-mediated airway inflammation without inducing a Th17 response and autoimmunity. Mol Immunol 77:60–70

    Article  CAS  PubMed  Google Scholar 

  37. Rahkila J, Panchadhayee R, Ardá A, Jiménez-Barbero J, Savolainen J, Leino R (2016) Acetylated trivalent mannobioses: chemical modification, structural elucidation, and biological evaluation. ChemMedChem 11:562–574

    Article  CAS  PubMed  Google Scholar 

  38. Ikeda M, Katoh S, Shimizu H, Hasegawa A, Ohashi-Doi K, Oka M (2016) Beneficial effects of Galectin-9 on allergen-specific sublingual immunotherapy in a Dermatophagoides farinae-induced mouse model of chronic asthma. Allergol Int. doi:10.1016/j.alit.2016.10.007

    Google Scholar 

  39. Palomares O, O’Mahony L, Akdis CA (2011) The many routes of dendritic cells to ensure immune regulation. J Allergy Clin Immunol 127:1541–1542

    Article  PubMed  Google Scholar 

  40. Baris S, Kiykim A, Ozen A, Tulunay A, Karakoc-Aydiner E, Barlan IB (2014) Vitamin D as an adjunct to subcutaneous allergen immunotherapy in asthmatic children sensitized to house dust mite. Allergy 69:246–253

    Article  CAS  PubMed  Google Scholar 

  41. Senti G, Johansen P, Kündig TM (2009) Intralymphatic immunotherapy. Curr Opin Allergy Clin Immunol 9:537–543

    Article  PubMed  Google Scholar 

  42. Zhao L, Seth A, Wibowo N, Zhao C‑X, Mitter N, Yu C et al (2014) Nanoparticle vaccines. Vaccine 32:327–337

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Brehler.

Ethics declarations

Interessenkonflikt

R. Brehler gibt an, dass er sich bei der Erstellung des Beitrages nicht von wirtschaftlichen Interessen leiten ließ. Er legt folgende potenzielle Interessenkonflikte offen: Vortragstätigkeit: ALK, Allergopharma, Almirall, AstraZeneca, Bencard, GSK, Dr. Pfleger, Leti, Novartis, Pierre Fabre, Pohl Boskamp, Siemens, Stallergenes, Thermo-Fischer. Beratertätigkeit: Allergopharma, Bencard, Leti, Novartis. Klinische Studien: Allergopharma, Bencard, Leti, Novartis, Circassia.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brehler, R. Adjuvanzien. Hautarzt 68, 292–296 (2017). https://doi.org/10.1007/s00105-017-3935-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-017-3935-2

Schlüsselwörter

Keywords

Navigation