Skip to main content

Advertisement

Log in

Geschlecht und Effekte von Steroidhormonen im Zentralnervensystem (ZNS)

Gender and the effects of steroid hormones in the central nervous system

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Häufiger Manifestationsort von degenerativen Erkrankungen des Zentralnervensystems (ZNS), die bei Männern und Frauen mit einer unterschiedlichen Inzidenz bzw. Prävalenz auftreten, ist der Hippokampus. Neurosteroide sind Steroidhormone, die im ZNS synthetisiert werden und auch dort ihre Wirkung entfalten. Zu ihnen zählen die Sexualsteroide Östrogen und Testosteron. Der Hippokampus ist ein Hirnareal, das eng mit Lernen und Gedächtnis assoziiert ist. Im weiblichen, aber nicht im männlichen Hippokampus ist die lokale Synthese von Östrogen essenziell für die Plastizität und Stabilität von Synapsen. Die Hemmung der Östrogensynthese im weiblichen Hippokampus zieht eine reduzierte Langzeitpotenzierung (LTP), die ein elektrophysiologischer Parameter für Lernen und Gedächtnis ist, und in der Folge einen signifikanten Synapsenverlust nach sich. Vor dem Hintergrund, dass für Östrogene zahlreiche protektive Funktionen bei degenerativen ZNS-Erkrankungen nachgewiesen worden sind, ergibt sich, dass therapeutische Konzepte mit Östrogeneinsatz möglicherweise nur bei Frauen, aber nicht bei Männern greifen. Gleichermaßen bieten diese Befunde eine Grundlage zur Erklärung der beobachteten Geschlechterdimorphismen bei vielen degenerativen ZNS-Erkrankungen.

Abstract

Degenerative diseases of the central nervous system, the incidence and prevalence of which vary between men and women, often manifest in the hippocampus. Neurosteroids are hormones that are synthesized in the CNS, and it is here that they exert their influence. Estrogen and testosterone are examples of neurosteroid hormones. In the hippocampus, an area of the brain closely associated with learning and memory, the local synthesis of estrogen in females, but not in males, is essential for the plasticity and stability of the synapses. The inhibition of estrogen synthesis in the female hippocampus causes a reduction in long-term potentiation (LTP), an electrophysiological parameter of learning and memory, thus resulting in a significant loss of synapses. In light of this, the fact that estrogen has been attributed with many neuroprotective functions in degenerative diseases of the CNS suggests that therapeutic concepts involving the use of estrogen are possibly only effective in women, but not in men. These findings similarly provide a basis for explaining the gender dimorphism that has been found in certain degenerative illnesses of the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Frick KM, Zhao Z, Fan L (2011) The epigenetics of estrogen: epigenetic regulation of hormone-induced memory enhancement. Epigenetics 6(6):675–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Grigoriadis S, Robinson GE (2007) Gender issues in depression. Ann Clin Psychiatry 19(4):247–255

    Article  PubMed  Google Scholar 

  3. Huber TJ et al (2004) Psychotic disorders and gonadal function: evidence supporting the oestrogen hypothesis. Acta Psychiatr Scand 109(4):269–274

    Article  CAS  PubMed  Google Scholar 

  4. Weinstock LS (1999) Gender differences in the presentation and management of social anxiety disorder. J Clin Psychiatry 60(Suppl 9):9–13

    PubMed  Google Scholar 

  5. Zandi PP et al (2002) Hormone replacement therapy and incidence of Alzheimer disease in older women: the Cache County Study. JAMA 288(17):2123–2129

    Article  CAS  PubMed  Google Scholar 

  6. Small SA et al (2011) A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci 12(10):585–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gould E et al (1990) Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. J Neurosci 10(4):1286–1291

    CAS  PubMed  Google Scholar 

  8. Leranth C, Hajszan T, MacLusky NJ (2004) Androgens increase spine synapse density in the CA1 hippocampal subfield of ovariectomized female rats. J Neurosci 24(2):495–499

    Article  CAS  PubMed  Google Scholar 

  9. Woolley CS et al (1990) Naturally-occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J Neurosci 10(12):4035–4039

    CAS  PubMed  Google Scholar 

  10. Compagnone NA, Mellon SH (2000) Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol 21(1):1–56

    Article  CAS  PubMed  Google Scholar 

  11. Naftolin F, Ryan KJ, Petro Z (1971) Aromatization of androstenedione by the diencephalon. J Clin Endocrinol Metab 33(2):368–370

    Article  CAS  PubMed  Google Scholar 

  12. Prange-Kiel J et al (2003) Para/autocrine regulation of estrogen receptors in hippocampal neurons. Hippocampus 13(2):226–234

    Article  CAS  PubMed  Google Scholar 

  13. von Schassen C et al (2006) Oestrogen synthesis in the hippocampus: role in axon outgrowth. J Neuroendocrinol 18(11):847–856

    Article  Google Scholar 

  14. Fester L et al (2009) Cholesterol-promoted synaptogenesis requires the conversion of cholesterol to estradiol in the hippocampus. Hippocampus 19(8):692–705

    Article  CAS  PubMed  Google Scholar 

  15. Kretz O et al (2004) Hippocampal synapses depend on hippocampal estrogen synthesis. J Neurosci 24(26):5913–5921

    Article  CAS  PubMed  Google Scholar 

  16. Prange-Kiel J et al (2013) Endocrine regulation of estrogen synthesis in the hippocampus? Prog Histochem Cytochem 48(2):49–64

    Article  PubMed  Google Scholar 

  17. Fester L et al (2006) Proliferation and apoptosis of hippocampal granule cells require local oestrogen synthesis. J Neurochem 97(4):1136–1144

    Article  CAS  PubMed  Google Scholar 

  18. Prange-Kiel J et al (2006) Inhibition of hippocampal estrogen synthesis causes region-specific downregulation of synaptic protein expression in hippocampal neurons. Hippocampus 16(5):464–471

    Article  CAS  PubMed  Google Scholar 

  19. Zhou L et al (2010) Aromatase inhibitors induce spine synapse loss in the hippocampus of ovariectomized mice. Endocrinology 151(3):1153–1160

    Article  CAS  PubMed  Google Scholar 

  20. Fester L et al (2012) Estrogen-regulated synaptogenesis in the hippocampus: sexual dimorphism in vivo but not in vitro. J Steroid Biochem Mol Biol 131(1–2):24–29

    Article  CAS  PubMed  Google Scholar 

  21. Balthazart J, Baillien M, Ball GF (2005) Interactions between kinases and phosphatases in the rapid control of brain aromatase. J Neuroendocrinol 17(9):553–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dowsett M et al (2005) The biology of steroid hormones and endocrine treatment of breast cancer. Breast 14(6):452–457

    Article  PubMed  Google Scholar 

  23. Shilling V et al (2001) The effects of oestrogens and anti-oestrogens on cognition. Breast 10(6):484–491

    Article  CAS  PubMed  Google Scholar 

  24. Shilling V et al (2005) The effects of adjuvant chemotherapy on cognition in women with breast cancer – preliminary results of an observational longitudinal study. Breast 14(2):142–150

    Article  CAS  PubMed  Google Scholar 

  25. Lamprecht R, LeDoux J (2004) Structural plasticity and memory. Nat Rev Neurosci 5(1):45–54

    Article  CAS  PubMed  Google Scholar 

  26. Vierk R et al (2012) Aromatase inhibition abolishes LTP generation in female but not in male mice. J Neurosci 32(24):8116–8126

    Article  CAS  PubMed  Google Scholar 

  27. Engert F, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399(6731):66–70

    Article  CAS  PubMed  Google Scholar 

  28. Zhou L, Fester L, Haghshenas S, de Vrese X, von Hacht R, Gloger S, Brandt N, Bader M, Vollmer G, Rune GM (2014) Oestradiol-induced synapse formation in the female hippocampus: roles of estrogen receptor subtypes. J Neuroendocrinol 26(7):439–447

  29. Prange-Kiel J et al (2008) Gonadotropin-releasing hormone regulates spine density via its regulatory role in hippocampal estrogen synthesis. J Cell Biol 180(2):417–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gillies GE, McArthur S (2010) Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol Rev 62(2):155–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cost KT et al (2012) Sex differences in object-in-place memory of adult rats. Behav Neurosci 126(3):457–464

    Article  PubMed  Google Scholar 

  32. Frye CA, Walf AA (2004) Estrogen and/or progesterone administered systemically or to the amygdala can have anxiety-, fear-, and pain-reducing effects in ovariectomized rats. Behav Neurosci 118(2):306–313

    Article  CAS  PubMed  Google Scholar 

  33. Gibbs RB (2005) Testosterone and estradiol produce different effects on cognitive performance in male rats. Horm Behav 48(3):268–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Martin DM et al (2008) Endogenous testosterone levels, mental rotation performance, and constituent abilities in middle-to-older aged men. Horm Behav 53(3):431–441

    Article  CAS  PubMed  Google Scholar 

  35. Sherwin BB (2003) Steroid hormones and cognitive functioning in aging men: a mini-review. J Mol Neurosci 20(3):385–393

    Article  CAS  PubMed  Google Scholar 

  36. Gasbarri A et al (2012) Estrogen, cognitive functions and emotion: an overview on humans, non-human primates and rodents in reproductive years. Rev Neurosci 23(5–6):587–606

    CAS  PubMed  Google Scholar 

  37. Nissen I et al (2012) Prolame ameliorates anxiety and spatial learning and memory impairment induced by ovariectomy in rats. Physiol Behav 106(2):278–284

    Article  CAS  PubMed  Google Scholar 

  38. Ryan J et al (2012) Hormone levels and cognitive function in postmenopausal midlife women. Neurobiol Aging 33(7):1138–1147

    Article  CAS  PubMed  Google Scholar 

  39. Sherwin BB (2012) Estrogen and cognitive functioning in women: lessons we have learned. Behav Neurosci 126(1):123–127

    Article  CAS  PubMed  Google Scholar 

  40. Velazquez-Zamora DA, Garcia-Segura LM, Gonzalez-Burgos I (2012) Effects of selective estrogen receptor modulators on allocentric working memory performance and on dendritic spines in medial prefrontal cortex pyramidal neurons of ovariectomized rats. Horm Behav 61(4):512–517

    Article  CAS  PubMed  Google Scholar 

  41. Duka T, Tasker R, McGowan JF (2000) The effects of 3-week estrogen hormone replacement on cognition in elderly healthy females. Psychopharmacology (Berl) 149(2):129–139

    Article  CAS  Google Scholar 

  42. Frick KM (2012) Building a better hormone therapy? How understanding the rapid effects of sex steroid hormones could lead to new therapeutics for age-related memory decline. Behav Neurosci 126(1):29–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maki PM, Resnick SM (2001) Effects of estrogen on patterns of brain activity at rest and during cognitive activity: a review of neuroimaging studies. Neuroimage 14(4):789–801

    Article  CAS  PubMed  Google Scholar 

  44. Maki PM, Sundermann E (2009) Hormone therapy and cognitive function. Hum Reprod Update 15(6):667–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Phillips SM, Sherwin BB (1992) Effects of estrogen on memory function in surgically menopausal women. Psychoneuroendocrinology 17(5):485–495

    Article  CAS  PubMed  Google Scholar 

  46. Sherwin BB (1988) Estrogen and/or androgen replacement therapy and cognitive functioning in surgically menopausal women. Psychoneuroendocrinology 13(4):345–357

    Article  CAS  PubMed  Google Scholar 

  47. Sherwin BB, Henry JF (2008) Brain aging modulates the neuroprotective effects of estrogen on selective aspects of cognition in women: a critical review. Front Neuroendocrinol 29(1):88–113

    Article  CAS  PubMed  Google Scholar 

  48. Nelson HD et al (2002) Postmenopausal hormone replacement therapy: scientific review. JAMA 288(7):872–881

    Article  CAS  PubMed  Google Scholar 

  49. Yaffe K et al (2007) Endogenous sex hormone levels and risk of cognitive decline in an older biracial cohort. Neurobiol Aging 28(2):171–178

    Article  CAS  PubMed  Google Scholar 

  50. Yaffe K et al (1998) Estrogen therapy in postmenopausal women – effects on cognitive function and dementia. JAMA 279(9):688–695

  51. Netter FH (2011) Atlas der Anatomie. Elsevier GmbH, Urban & Fischer Verlag, München

  52. Paulsen F, Waschke J (2010) Sobotta: Atlas der Anatomie des Menschen, 23. Auflage, Elsevier GmbH, Urban & Fischer, München

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt

N. Brandt, R. Vierk, L. Fester, L. Zhou, P. Imholz und G. M. Rune geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Rune.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandt, N., Vierk, R., Fester, L. et al. Geschlecht und Effekte von Steroidhormonen im Zentralnervensystem (ZNS). Bundesgesundheitsbl. 57, 1054–1060 (2014). https://doi.org/10.1007/s00103-014-2014-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-014-2014-4

Schlüsselwörter

Keywords

Navigation