Skip to main content

Advertisement

Log in

Gentherapie der SCID-X1

Gene therapy of SCID-X1

  • Leitthema: Seltene Krankheiten, Teil 1
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

SCID-X1 ist eine X-chromosomal vererbte Form der schweren kombinierten Immundefizienz, die durch inaktivierende Mutationen im IL2RG-Gen verursacht wird. Dieses Gen kodiert für die gemeinsame γ-Kette der Interleukinrezeptoren (Interleukin 2 receptor common gamma chain, Interleukin-2-Rezeptor-γ-Kette, IL2RG). Die betroffenen Jungen können 2 Haupttypen der Effektorzellen des Immunsystems nicht entwickeln (T-Zellen und NK-Zellen) und leiden zudem unter einer Funktionsstörung der B-Zellen. Eine alleinige Therapie mit antibiotischen Medikamenten und Immunglobulinen ist unzureichend. Sofern keine kausale Behandlung angeboten wird, sterben die Kinder oftmals im ersten Lebensjahr. Für ein Drittel der Patienten besteht die Möglichkeit der Transplantation von Knochenmark eines vollständig immunkompatiblen Spenders, die im Regelfall zur Heilung ohne wesentliche Nebenwirkungen führt. Andere Formen der Knochenmarktransplantation sind jedoch mit schweren und potenziell letalen Nebenwirkungen verknüpft. Im vergangenen Jahrzehnt haben Wissenschaftler daran gearbeitet, neue Behandlungsmöglichkeiten mittels Gentransfer einer intakten Kopie des IL2RG-Gens in patienteneigene, d. h. autologe, hämatopoetische Zellen zu entwickeln. Dieses Gentransferverfahren war hochgradig effektiv, sofern es bei jungen Patienten angewendet wurde. Jedoch entwickelten einige Patienten später eine Leukämie, die auf eine Aktivierung zellulärer Protoonkogene infolge der ungezielten Integration des Gentransfervektors in das Genom der hämatopoetischen Zellen zurückgeführt werden konnte. Eine verbesserte Vektortechnologie in Kombination mit anderen Protokollmodifikationen wird dieses Risiko in künftigen Gentherapiestudien wahrscheinlich senken können.

Abstract

X-linked severe combined immunodeficiency (SCID-X1) is an inherited disease caused by inactivating mutations in the gene encoding the interleukin 2 receptor common gamma chain (IL2RG), which is located on the X-chromosome. Affected boys fail to develop two major effector cell types of the immune system (T cells and NK cells) and suffer from a functional B cell defect. Although drugs such as antibiotics can offer partial protection, the boys normally die in the first year of life in the absence of a curative therapy. For a third of the children, bone marrow transplantation from a fully matched donor is available and can cure the disease without major side effects. Mismatched bone marrow transplantation, however, is complicated by severe and potentially lethal side effects. Over the past decade, scientists worldwide have developed new treatments by introducing a correct copy of the IL2RG-cDNA. Gene therapy was highly effective when applied in young children. However, in a few patients the IL2RG-gene vector has unfortunately caused leukaemia. Activation of cellular proto-on-cogenes by accidental integration of the gene vector has been identified as the underlying mechanism. In future clinical trials, improved vector technology in combination with other protocol modifications may reduce the risk of this side effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Fischer A, Le Deist F, Hacein-Bey-Abina S, et al. (2005) Severe combined immunodeficiency. A model disease for molecular immunology and therapy. Immunol Rev 203:98–109

    Article  PubMed  CAS  Google Scholar 

  2. Noguchi M, Yi H, Rosenblatt HM, et al. (1993) Interleukin- 2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73:147–157

    Article  PubMed  CAS  Google Scholar 

  3. Kovanen PE, Leonard WJ (2004) Cytokines and immunodeficiency diseases: critical roles of the gamma(c)-dependent cytokines interleukins 2, 4, 7, 9, 15, and 21, and their signaling pathways. Immunol Rev 202:67–83

    Article  PubMed  CAS  Google Scholar 

  4. Carson WE, Fehniger TA, Caligiuri MA (1997) CD- 56bright natural killer cell subsets: characterization of distinct functional responses to interleukin- 2 and the c-kit ligand. Eur J Immunol 27:354–360

    Article  PubMed  CAS  Google Scholar 

  5. White H, Thrasher AJ, Veys P, et al. (2000) Intrinsic defects of B cell function in X-linked severe combined immunodeficiency. Eur J Immunol 30:732

    Article  PubMed  CAS  Google Scholar 

  6. Ihle JN (1995) Cytokine receptor signalling. Nature 377:592–594

    Article  Google Scholar 

  7. Macchi P, Villa A, Giliani S, et al. (1995) Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377:65–68

    Article  PubMed  CAS  Google Scholar 

  8. Russell SM, Tayebi N, Nakajima H, et al. (1995) Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270:797–800

    Article  PubMed  CAS  Google Scholar 

  9. Leonard WJ, O‘Shea JJ (1998) Jaks and STATs: biological implications. Annu Rev Immunol 16:293–322

    Article  PubMed  CAS  Google Scholar 

  10. Shou Y, Ma Z, Lu T, Sorrentino BP (2006) Unique risk factors for insertional mutagenesis in a mouse model of XSCID gene therapy. Proc Natl Acad Sci USA 103:11730–11735

    Article  PubMed  CAS  Google Scholar 

  11. Buckley RH, Schiff RI, Schiff SE, et al. (1997) Human severe combined immunodeficiency: genetic, phenotypic, and functional diversity in one hundred eight infants. J Pediatr 130:378–387

    Article  PubMed  CAS  Google Scholar 

  12. Jones AM, Clark PA, Katz F, et al. (1997) B-cellnegative severe combined immunodeficiency associated with a common gamma chain mutation. Hum Genet 99:677–680

    Article  PubMed  CAS  Google Scholar 

  13. DiSanto JP, Rieux-Laucat F, Dautry-Varsat A, et al. (1994) Defective human interleukin 2 receptor gamma chain in an atypical X chromosome-linked severe combined immunodeficiency with peripheral T cells. Proc Natl Acad Sci USA 91:9466–9470

    Article  PubMed  CAS  Google Scholar 

  14. Ginn S, Curtin JA, Kramer B, et al. (2005) Treatment of an infant with X-linked severe combined immunodeficiency (SCID-X1) by gene therapy in Australia. Med J Australia

  15. Stephan V, Wahn V, Le-Deist F, et al. (1996) Atypical X-linked severe combined immunodeficiency due to possible spontaneous reversion of the genetic defect in T cells. New Engl J Med 335:1563–1567

    Article  PubMed  CAS  Google Scholar 

  16. Bousso P, Wahn V, Douagi I, et al. (2000) Diversity, functionality, and stability of the T cell repertoire derived in vivo from a single human T cell precursor. Proc Natl Acad Sci USA 97:274–278

    Article  PubMed  CAS  Google Scholar 

  17. Gilmour KC, Cranston T, Loughlin S, et al. (2001) Rapid protein-based assays for the diagnosis of T-B+ severe combined immunodeficiency. Br J Haematol 112:671–676

    Article  PubMed  CAS  Google Scholar 

  18. Buckley RH (2004) Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu Rev Immunol 22:625–655

    Article  PubMed  CAS  Google Scholar 

  19. Buckley RH (2000) Advances in the understanding and treatment of human severe combined immunodeficiency. Immunol Res 22:237–251

    Article  PubMed  CAS  Google Scholar 

  20. Ljungman P, Urbano-Ispizua A, Cavazzana-Calvo M, et al. (2006) Allogeneic and autologous transplantation for haematological diseases, solid tumours and immune disorders: definitions and current practice in Europe. Bone Marrow Transplant 37:439–449

    Article  PubMed  CAS  Google Scholar 

  21. Mulligan RC (1993) The basic science of gene therapy. Science 260:926–932

    Article  PubMed  CAS  Google Scholar 

  22. Ailles LE, Naldini L (2002) HIV-1-derived lentiviral vectors. Curr Top Microbiol Immunol 261:31–52

    PubMed  CAS  Google Scholar 

  23. Baum C, Schambach A, Bohne J, Galla M (2006) Retrovirus vectors: toward the plentivirus? Mol Ther 13:1050–1063

    Article  PubMed  CAS  Google Scholar 

  24. Baum C, Dullmann J, Li Z, et al. (2003) Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 101:2099–2114

    Article  PubMed  CAS  Google Scholar 

  25. Baum C, von Kalle C, Staal FJ, et al. (2004) Chance or necessity? Insertional mutagenesis in gene therapy and its consequences. Mol Ther 9:5–13

    Article  PubMed  CAS  Google Scholar 

  26. Nienhuis AW, Dunbar CE, Sorrentino BP (2006) Genotoxicity of retroviral integration in hematopoietic cells. Mol Ther 13:1031–1049

    Article  PubMed  CAS  Google Scholar 

  27. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al. (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288:669–672

    Article  PubMed  CAS  Google Scholar 

  28. Hacein-Bey-Abina S, Le Deist F, Carlier F, et al. (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346:1185–1193

    Article  PubMed  CAS  Google Scholar 

  29. Gaspar HB, Parsley KL, Howe S, et al. (2004) Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 364:2181–2187

    Article  PubMed  CAS  Google Scholar 

  30. Thrasher AJ, Hacein-Bey-Abina S, Gaspar HB, et al. (2005) Failure of SCID-X1 gene therapy in older patients. Blood 105:4255–4257

    Article  PubMed  CAS  Google Scholar 

  31. Rideout WM, Hochedlinger K, Kyba M, et al. (2002) Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109:17–27

    Article  PubMed  CAS  Google Scholar 

  32. DiSanto JP, Muller W, Guy-Grand D, et al. (1995) Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc Natl Acad Sci USA 92:377–381

    Article  PubMed  CAS  Google Scholar 

  33. Cao X, Shores EW, Hu-Li J, et al. (1995) Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 2:223–238

    Article  PubMed  CAS  Google Scholar 

  34. Lo M, Bloom ML, Imada K, et al. (1999) Restoration of lymphoid populations in a murine model of Xlinked severe combined immunodeficiency by a gene-therapy approach. Blood 94:3027–3036

    PubMed  CAS  Google Scholar 

  35. Otsu M, Steinberg M, Ferrand C, et al. (2002) Reconstitution of lymphoid development and function in ZAP-70-deficient mice following gene transfer into bone marrow cells. Blood 100:1248–1256

    Article  PubMed  CAS  Google Scholar 

  36. Soudais C, Shiho T, Sharara LI, et al. (2000) Stable and functional lymphoid reconstitution of common cytokine receptor gamma chain deficient mice by retroviral-mediated gene transfer. Blood 95:3071–3077

    PubMed  CAS  Google Scholar 

  37. Thrasher AJ, Gaspar HB, Baum C, et al. (2006) Gene therapy: X-SCID transgene leukaemogenicity. Nature 443:E5–6; discussion E6–7

    Article  CAS  Google Scholar 

  38. Schmidt M, Hacein-Bey-Abina S, Wissler M, et al. (2005) Clonal evidence for the transduction of CD34+ cells with lymphomyeloid differentiation potential and self-renewal capacity in the SCID-X1 gene therapy trial. Blood 105:2699–2706

    Article  PubMed  CAS  Google Scholar 

  39. Thrasher A (2006) Gene therapy of inherited immunodeficiencies. 14th Annual Meeting of the European Society of Gene Therapy. Athen, Griechenland, 9.11.2006

  40. Hacein-Bey-Abina S (2006) Gene therapy of severe combined immunodeficiency. 14th Annual Meeting of the European Society of Gene Therapy. Athen, Griechenland, 12.11.2006

  41. Hacein-Bey-Abina S, von Kalle C, Schmidt M, et al. (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419

    Article  PubMed  CAS  Google Scholar 

  42. Deichmann A, Hacein-Bey-Albina S, Schmidt M, et al. (2007) Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy. J Clin Invest 117:2225–2232

    Article  PubMed  CAS  Google Scholar 

  43. Bester AC, Schwartz M, Schmidt M, et al. (2006) Fragile sites are preferential targets for integrations of MLV vectors in gene therapy. Gene Ther 13:1057–1059

    Article  PubMed  CAS  Google Scholar 

  44. Modlich U, Kustikova O, Schmidt M, et al. (2005) Leukemias following retroviral transfer of multidrug resistance 1 are driven by combinatorial insertional mutagenesis. Blood 105:4235–4246

    Article  PubMed  CAS  Google Scholar 

  45. Li Z, Dullmann J, Schiedlmeier B, et al. (2002) Murine leukemia induced by retroviral gene marking. Science 296:497

    Article  PubMed  CAS  Google Scholar 

  46. Seggewiss R, Pittaluga S, Adler RL, et al. (2006) Acute myeloid leukemia associated with retroviral gene transfer to hematopoietic progenitor cells of a rhesus macaque. Blood 107:3865–3867

    Article  PubMed  CAS  Google Scholar 

  47. Kustikova OS, Fehse B, Modlich U, et al. (2005) Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking. Science 308:1171–1174

    Article  PubMed  CAS  Google Scholar 

  48. Ott MG, Schmidt M, Schwarzwaelder K, et al. (2006) Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 12:401–409

    Article  PubMed  CAS  Google Scholar 

  49. Recchia A, Bonini C, Magnani Z, et al. (2006) Retroviral vector integration deregulates gene expression but has no consequence on the biology and function of transplanted T cells. Proc Natl Acad Sci USA 103:1457–1462

    Article  PubMed  CAS  Google Scholar 

  50. Lewinski MK, Yamashita M, Emerman M, et al. (2006) Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog 2:e60

    Article  PubMed  Google Scholar 

  51. Kustikova O, Geiger H, Li Z, et al. (2007) Retroviral vector insertion sites associated with dominant hematopoietic clones mark „stemness“ pathways. Blood 109:1897–1907

    Article  PubMed  CAS  Google Scholar 

  52. Montini E, Cesana D, Schmidt M, et al. (2006) Hematopoietic stem cell gene transfer in a tumorprone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 24:687–696

    Article  PubMed  CAS  Google Scholar 

  53. Modlich U, Bohne J, Schmidt M, et al. (2006) Cellculture assays reveal the importance of retroviral vector design for insertional genotoxicity. Blood 108:2545–2553

    Article  PubMed  CAS  Google Scholar 

  54. Pike-Overzet K, de Ridder D, Weerkamp F, et al. (2006) Gene therapy: is IL2RG oncogenic in T-cell development? Nature 443:E5; discussion E6–7

    Article  PubMed  CAS  Google Scholar 

  55. Davé U, Jenkins NA, Copeland NG (2004) Gene therapy insertional mutagenesis insights. Science 303:333

    Article  PubMed  Google Scholar 

  56. Woods NB, Bottero V, Schmidt M, et al. (2006) Gene therapy: therapeutic gene causing lymphoma. Nature 440:1123

    Article  PubMed  CAS  Google Scholar 

  57. Modlich U (2006) Improved vector design and low hematopoietic stress reduce the risk of severe adverse events caused by gene-modified hematopoietic cells. 14th Annual Meeting of the European Society of Gene Therapy. Athen, Griechenland, 10.11.2006

  58. Kohn DB, Sadelain M, Glorioso JC (2003) Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer 3:477–488

    Article  PubMed  CAS  Google Scholar 

  59. Aiuti A, Slavin S, Aker M, et al. (2002) Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296:2410–2413

    Article  PubMed  CAS  Google Scholar 

  60. Schmidt M, Carbonaro DA, Speckmann C, et al. (2003) Clonality analysis after retroviral-mediated gene transfer to CD34+ cells from the cord blood of ADA-deficient SCID neonates. Nat Med 9:463–468

    Article  PubMed  CAS  Google Scholar 

  61. Yanez-Munoz RJ, Balaggan KS, MacNeil A, et al. (2006) Effective gene therapy with nonintegrating lentiviral vectors. Nat Med 12:348–353

    Article  PubMed  CAS  Google Scholar 

  62. Baiker A, Maercker C, Piechaczek C, et al. (2000) Mitotic stability of S/MAR containing episomal vectors is provided by nuclear matrix association. Nature Cell Biol 2:182–184

    Article  PubMed  CAS  Google Scholar 

  63. Cathomen T (2004) AAV vectors for gene correction. Curr Opin Mol Ther 6:360–366

    PubMed  CAS  Google Scholar 

  64. Cathomen T, Weitzman MD (2005) Gene repair: pointing the finger at genetic disease. Gene Ther 12:1415–1416

    Article  PubMed  CAS  Google Scholar 

  65. Zayed H, Izsvak Z, Walisko O, Ivics Z (2004) Development of hyperactive sleeping beauty transposon vectors by mutational analysis. Mol Ther 9:292–304

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Baum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baum, C., Schambach, A., Modlich, U. et al. Gentherapie der SCID-X1. Bundesgesundheitsbl. 50, 1507–1517 (2007). https://doi.org/10.1007/s00103-007-0385-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-007-0385-5

Schlüsselwörter

Keywords

Navigation