Skip to main content
Log in

Neuroprotektion durch Edelgase

Neue Entwicklungen und Erkenntnisse

Neuroprotection by noble gases

New developments and insights

  • Klinische Pharmakologie
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Edelgase sind chemisch inerte Elemente, die z. T. biologische Aktivität haben. Besonders neuroprotektive Eigenschaften sind für Xenon, Argon und auch Helium experimentell gut belegt. Die zugrunde liegenden Mechanismen hierfür sind noch nicht vollständig aufgeklärt. Neben der Beeinflussung von neuronalen Ionenkanälen und zellulären Signaltransduktionskaskaden sowie antiapoptotischen Effekten scheint auch die Modulation der Neuroinflammation eine entscheidende Rolle zu spielen. Die vorliegende Übersicht beleuchtet den aktuellen Stand der Forschung zur Neuroprotektion durch Edelgase mit einem Fokus auf Interaktionen mit dem neuronal-glialen Netzwerk sowie der Neuroinflammation und gibt einen Ausblick auf mögliche klinische Anwendungen.

Abstract

Noble gases are chemically inert elements, some of which exert biological activity. Experimental neuroprotection in particular has been widely shown for xenon, argon and helium. The underlying mechanisms of action are not yet fully understood. Besides an interference with neuronal ion-gated channels and cellular signaling pathways as well as anti-apoptotic effects, the modulation of neuroinflammation seems to play a crucial role. This review presents the current knowledge on neuroprotection by noble gases with a focus on interactions with the neuronal-glial network and neuroinflammation and the perspectives on clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1

Literatur

  1. Arola OJ, Laitio RM, Roine RO, Gronlund J, Saraste A, Pietila M et al (2013) Feasibility and cardiac safety of inhaled xenon in combination with therapeutic hypothermia following out-of-hospital cardiac arrest. Crit Care Med 41:2116–2124

    Article  CAS  PubMed  Google Scholar 

  2. Banks P, Franks NP, Dickinson R (2010) Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor mediates xenon neuroprotection against hypoxia-ischemia. Anesthesiology 112:614–622

    Article  CAS  PubMed  Google Scholar 

  3. Bantel C, Maze M, Trapp S (2009) Neuronal preconditioning by inhalational anesthetics: evidence for the role of plasmalemmal adenosine triphosphate-sensitive potassium channels. Anesthesiology 110:986–995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bantel C, Maze M, Trapp S (2010) Noble gas xenon is a novel adenosine triphosphate-sensitive potassium channel opener. Anesthesiology 112:623–630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Brucken A, Cizen A, Fera C, Meinhardt A, Weis J, Nolte K et al (2013) Argon reduces neurohistopathological damage and preserves functional recovery after cardiac arrest in rats. Br J Anaesth 110(Suppl 1):i106–i112

    Article  PubMed  Google Scholar 

  6. Brucken A, Kurnaz P, Bleilevens C, Derwall M, Weis J, Nolte K et al (2014) Dose dependent neuroprotection of the noble gas argon after cardiac arrest in rats is not mediated by K-Channel opening. Resuscitation 85:826–832

    Article  CAS  PubMed  Google Scholar 

  7. Cattano D, Valleggi S, Ma D, Kastsiuchenka O, Abramo A, Sun P et al (2008) Xenon induces transcription of ADNP in neonatal rat brain. Neurosci Lett 440:217–221

    Article  CAS  PubMed  Google Scholar 

  8. Chakkarapani E, Dingley J, Liu X, Hoque N, Aquilina K, Porter H et al (2010) Xenon enhances hypothermic neuroprotection in asphyxiated newborn pigs. Ann Neurol 68:330–341

    Article  PubMed  Google Scholar 

  9. Coburn M, Maze M, Franks NP (2008) The neuroprotective effects of xenon and helium in an in vitro model of traumatic brain injury. Crit Care Med 36:588–595

    Article  CAS  PubMed  Google Scholar 

  10. Coburn M, Sanders RD, Maze M, Rossaint R (2012) The Hip Fracture Surgery in Elderly Patients (HIPELD) study: protocol for a randomized, multicenter controlled trial evaluating the effect of xenon on postoperative delirium in older patients undergoing hip fracture surgery. Trials 13:180

    Article  PubMed Central  PubMed  Google Scholar 

  11. David HN, Haelewyn B, Chazalviel L, Lecocq M, Degoulet M, Risso JJ et al (2009) Post-ischemic helium provides neuroprotection in rats subjected to middle cerebral artery occlusion-induced ischemia by producing hypothermia. J Cereb Blood Flow Metab 29:1159–1165

    Article  PubMed  Google Scholar 

  12. David HN, Haelewyn B, Degoulet M, Colomb DG Jr, Risso JJ, Abraini JH (2012) Ex vivo and in vivo neuroprotection induced by argon when given after an excitotoxic or ischemic insult. PLoS One 7:e30934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Dingley J, Tooley J, Liu X, Scull-Brown E, Elstad M, Chakkarapani E et al (2014) Xenon ventilation during therapeutic hypothermia in neonatal encephalopathy: a feasibility study. Pediatrics 133:809–818 (PMID:24777219)

    Article  PubMed  Google Scholar 

  14. Dingley J, Tooley J, Porter H, Thoresen M (2006) Xenon provides short-term neuroprotection in neonatal rats when administered after hypoxia-ischemia. Stroke 37:501–506

    Article  CAS  PubMed  Google Scholar 

  15. Dinse A, Fohr KJ, Georgieff M, Beyer C, Bulling A, Weigt HU (2005) Xenon reduces glutamate-, AMPA-, and kainate-induced membrane currents in cortical neurones. Br J Anaesth 94:479–485

    Article  CAS  PubMed  Google Scholar 

  16. Fahlenkamp AV, Coburn M, de Prada A, Gereitzig N, Beyer C, Haase H et al (2014) Expression analysis following argon treatment in an in vivo model of transient middle cerebral artery occlusion in rats. Med Gas Res 4:11. doi:10.1186/2045-9912-4-11. eCollection;%2014.:11–14

    Article  PubMed Central  PubMed  Google Scholar 

  17. Fahlenkamp AV, Coburn M, Haase H, Kipp M, Ryang YM, Rossaint R et al (2011) Xenon enhances LPS-induced IL-1beta expression in microglia via the extracellular signal-regulated kinase 1/2 pathway. J Mol Neurosci 45:48–59

    Article  CAS  PubMed  Google Scholar 

  18. Fahlenkamp AV, Rossaint R, Haase H, Al Kassam H, Ryang YM, Beyer C et al (2012) The noble gas argon modifies extracellular signal-regulated kinase 1/2 signaling in neurons and glial cells. Eur J Pharmacol 674:104–111

    Article  CAS  PubMed  Google Scholar 

  19. Faulkner S, Bainbridge A, Kato T, Chandrasekaran M, Kapetanakis AB, Hristova M et al (2011) Xenon augmented hypothermia reduces early lactate/N-acetylaspartate and cell death in perinatal asphyxia. Ann Neurol 70:133–150

    Article  CAS  PubMed  Google Scholar 

  20. Finnie JW (2013) Neuroinflammation: beneficial and detrimental effects after traumatic brain injury. Inflammopharmacology 21:309–320

    Article  CAS  PubMed  Google Scholar 

  21. Franks NP, Dickinson R, de Sousa SL, Hall AC, Lieb WR (1998) How does xenon produce anaesthesia? Nature 396:324

    Article  CAS  PubMed  Google Scholar 

  22. Fries M, Brucken A, Cizen A, Westerkamp M, Lower C, Deike-Glindemann J et al (2012) Combining xenon and mild therapeutic hypothermia preserves neurological function after prolonged cardiac arrest in pigs. Crit Care Med 40:1297–1303

    Article  CAS  PubMed  Google Scholar 

  23. Fries M, Nolte KW, Coburn M, Rex S, Timper A, Kottmann K et al (2008) Xenon reduces neurohistopathological damage and improves the early neurological deficit after cardiac arrest in pigs. Crit Care Med 36:2420–2426

    Article  PubMed  Google Scholar 

  24. Gruss M, Bushell TJ, Bright DP, Lieb WR, Mathie A, Franks NP (2004) Two-pore-domain K + channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol Pharmacol 65:443–452

    Article  CAS  PubMed  Google Scholar 

  25. Harris K, Armstrong SP, Campos-Pires R, Kiru L, Franks NP, Dickinson R (2013) Neuroprotection against traumatic brain injury by xenon, but not argon, is mediated by inhibition at the N-methyl-D-aspartate receptor glycine site. Anesthesiology 119:1137–1148

    Article  CAS  PubMed  Google Scholar 

  26. Hernandez-Ontiveros DG, Tajiri N, Acosta S, Giunta B, Tan J, Borlongan CV (2013) Microglia activation as a biomarker for traumatic brain injury. Front Neurol 4:30. doi:10.3389/fneur.2013.00030. eCollection;%2013.:30

    Article  PubMed Central  PubMed  Google Scholar 

  27. Hobbs C, Thoresen M, Tucker A, Aquilina K, Chakkarapani E, Dingley J (2008) Xenon and hypothermia combine additively, offering long-term functional and histopathologic neuroprotection after neonatal hypoxia/ischemia. Stroke 39:1307–1313

    Article  PubMed  Google Scholar 

  28. Hollig A, Schug A, Fahlenkamp AV, Rossaint R, Coburn M (2014) Argon: systematic review on neuro- and organoprotective properties of an „inert“ gas. Int J Mol Sci 15:18175–18196

    Article  PubMed Central  PubMed  Google Scholar 

  29. Jawad N, Rizvi M, Gu J, Adeyi O, Tao G, Maze M et al (2009) Neuroprotection (and lack of neuroprotection) afforded by a series of noble gases in an in vitro model of neuronal injury. Neurosci Lett 460:232–236

    Article  CAS  PubMed  Google Scholar 

  30. Koblin DD, Fang Z, Eger EI, Laster MJ, Gong D, Ionescu P et al (1998) Minimum alveolar concentrations of noble gases, nitrogen, and sulfur hexafluoride in rats: helium and neon as nonimmobilizers (nonanesthetics). Anesth Analg 87:419–424

    CAS  PubMed  Google Scholar 

  31. Kumar A, Loane DJ (2012) Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav Immun 26:1191–1201

    Article  PubMed  Google Scholar 

  32. Liu Y, Xue F, Liu G, Shi X, Liu Y, Liu W et al (2011) Helium preconditioning attenuates hypoxia/ischemia-induced injury in the developing brain. Brain Res 1376:122–129. doi:10.1016/j.brainres.2010.12.068 (2010 Dec 29.:122–129)

    Article  CAS  PubMed  Google Scholar 

  33. Loetscher PD, Rossaint J, Rossaint R, Weis J, Fries M, Fahlenkamp A et al (2009) Argon: neuroprotection in in vitro models of cerebral ischemia and traumatic brain injury. Crit Care 13:R206

    Article  PubMed Central  PubMed  Google Scholar 

  34. Luo Y, Ma D, Ieong E, Sanders RD, Yu B, Hossain M et al (2008) Xenon and sevoflurane protect against brain injury in a neonatal asphyxia model. Anesthesiology 109:782–789

    Article  CAS  PubMed  Google Scholar 

  35. Ma D, Hossain M, Chow A, Arshad M, Battson RM, Sanders RD et al (2005) Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia. Ann Neurol 58:182–193

    Article  CAS  PubMed  Google Scholar 

  36. Ma D, Hossain M, Pettet GK, Luo Y, Lim T, Akimov S et al (2006) Xenon preconditioning reduces brain damage from neonatal asphyxia in rats. J Cereb Blood Flow Metab 26:199–208

    Article  CAS  PubMed  Google Scholar 

  37. Murray PJ, Smale ST (2012) Restraint of inflammatory signaling by interdependent strata of negative regulatory pathways. Nat Immunol 13:916–924

    Article  CAS  PubMed  Google Scholar 

  38. Natale G, Cattano D, Abramo A, Forfori F, Fulceri F, Fornai F et al (2006) Morphological evidence that xenon neuroprotects against N-methyl-DL-aspartic acid-induced damage in the rat arcuate nucleus: a time-dependent study. Ann N Y Acad Sci 1074:650–658

    Article  CAS  PubMed  Google Scholar 

  39. Pan Y, Zhang H, Acharya AB, Cruz-Flores S, Panneton WM (2011) The effect of heliox treatment in a rat model of focal transient cerebral ischemia. Neurosci Lett 497:144–147

    Article  CAS  PubMed  Google Scholar 

  40. Pan Y, Zhang H, VanDeripe DR, Cruz-Flores S, Panneton WM (2007) Heliox and oxygen reduce infarct volume in a rat model of focal ischemia. Exp Neurol 205:587–590

    Article  CAS  PubMed  Google Scholar 

  41. Petzelt C, Blom P, Schmehl W, Muller J, Kox WJ (2003) Prevention of neurotoxicity in hypoxic cortical neurons by the noble gas xenon. Life Sci 72:1909–1918

    Article  CAS  PubMed  Google Scholar 

  42. Ristagno G, Fumagalli F, Russo I, Tantillo S, Zani DD, Locatelli V et al (2014) Postresuscitation treatment with argon improves early neurological recovery in a porcine model of cardiac arrest. Shock 41:72–78

    Article  CAS  PubMed  Google Scholar 

  43. Ryang YM, Fahlenkamp AV, Rossaint R, Wesp D, Loetscher PD, Beyer C et al (2011) Neuroprotective effects of argon in an in vivo model of transient middle cerebral artery occlusion in rats. Crit Care Med 39:1448–1453

    Article  CAS  PubMed  Google Scholar 

  44. Sabir H, Bishop S, Cohen N, Maes E, Liu X, Dingley J et al (2013) Neither xenon nor fentanyl induces neuroapoptosis in the newborn pig brain. Anesthesiology 119:345–357

    Article  CAS  PubMed  Google Scholar 

  45. Sheng SP, Lei B, James ML, Lascola CD, Venkatraman TN, Jung JY et al (2012) Xenon neuroprotection in experimental stroke: interactions with hypothermia and intracerebral hemorrhage. Anesthesiology 117:1262–1275

    Article  CAS  PubMed  Google Scholar 

  46. Ulbrich F, Kaufmann KB, Coburn M, Lagreze WA, Roesslein M, Biermann J et al (2015) Neuroprotective effects of Argon are mediated via an ERK-1/2 dependent regulation of heme-oxygenase-1 in retinal ganglion cells. J Neurochem 134:717–727

    Article  CAS  PubMed  Google Scholar 

  47. Ulbrich F, Schallner N, Coburn M, Loop T, Lagreze WA, Biermann J et al (2014) Argon inhalation attenuates retinal apoptosis after ischemia/reperfusion injury in a time- and dose-dependent manner in rats. PLoS One 9:e115984

    Article  PubMed Central  PubMed  Google Scholar 

  48. Yang YW, Cheng WP, Lu JK, Dong XH, Wang CB, Zhang J et al (2014) Timing of xenon-induced delayed postconditioning to protect against spinal cord ischaemia-reperfusion injury in rats. Br J Anaesth 113:168–176

    Article  CAS  PubMed  Google Scholar 

  49. Yang YW, Lu JK, Qing EM, Dong XH, Wang CB, Zhang J et al (2012) Post-conditioning by xenon reduces ischaemia-reperfusion injury of the spinal cord in rats. Acta Anaesthesiol Scand 56:1325–1331

    Article  CAS  PubMed  Google Scholar 

  50. Zhuang L, Yang T, Zhao H, Fidalgo AR, Vizcaychipi MP, Sanders RD et al (2012) The protective profile of argon, helium, and xenon in a model of neonatal asphyxia in rats. Crit Care Med 40:1724–1730

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Fahlenkamp.

Ethics declarations

Interessenkonflikt

A.V. Fahlenkamp hat eine Reisekostenübernahme zu einem Studienprüfer-Treffen von Air Liquide Sante International, einem Unternehmen das medizinische Gase wie Xenon und Argon vertreibt, erhalten. R. Rossaint und M. Coburn haben Beratungstätigkeiten vergütet, Studienunterstützungen sowie Honorare für Vorträge von Air Liquide Sante International bekommen.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

A.V. Fahlenkamp ist Mitglied des „Wissenschaftlichen Arbeitskreises Wissenschaftlicher Nachwuchs (WAKWiN)“ der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin e. V. (DGAI).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahlenkamp, A., Rossaint, R. & Coburn, M. Neuroprotektion durch Edelgase. Anaesthesist 64, 855–858 (2015). https://doi.org/10.1007/s00101-015-0079-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-015-0079-6

Schlüsselwörter

Keywords

Navigation