Skip to main content
Log in

Volumentherapie bei Hämorrhagie

Fluid resuscitation in hemorrhage

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Wie eine Volumentherapie bei akuter Hämorrhagie durchgeführt werden soll, wird nach wie vor kontrovers diskutiert. Obwohl die forcierte Gabe von Kristalloiden und Kolloiden lange Zeit praktiziert wurde und auch noch praktiziert wird, gibt es heute gute Argumente dafür, dass eine zurückhaltende Infusion von Kristalloiden zunächst ausreichend sein kann. Allerdings sollte 0,9 %ige NaCl-Lösung als Volumenersatz nicht mehr verabreicht werden. Für eine zurückhaltende Volumentherapie spricht, dass keine großen prospektiven und randomisierten Studien existieren, die bewiesen hätten, dass die forcierte Gabe von Volumenersatzmitteln die Überlebensrate verbessert. Dass bislang kein positiver Effekt beobachtet werden konnte, wird damit erklärt, dass die Volumentherapie selbst eine Blutung durch einen Blutdruckanstieg und eine Dilutionskoagulopathie verstärken soll. Gleichwohl empfehlen nationale und internationale Leitlinien, dass ein Volumenersatz spätestens dann verabreicht werden soll, wenn die Hämodynamik unter einer Blutung instabil wird. Es muss auch bedacht werden, dass eine „damage control resuscitation“ per se weder eine bereits reduzierte Gewebeperfusion noch die Hämostase verbessert. Im akuten und ggf. schnell progredienten Volumenmangelschock können Kolloide den Kristalloiden unter dem Aspekt einer hämodynamischen Stabilisierung überlegen sein. Hydroxyethylstärke (HES) der 3. und 4. Generation ist bei gegebener Indikation und unter Beachtung der Höchstdosierung sicher. Werden Volumenersatzmittel unter ständiger Reevaluation der Parameter, die das Sauerstoffangebot beeinflussen, verabreicht, sollte das Ziel sein, so wenig zu infundieren, dass es nicht zu unerwünschten Effekten kommt, aber so viel, dass die Versorgung des Gewebes mit Sauerstoff und das Überleben der Patienten sichergestellt sind.

Abstract

How fluid resuscitation has to be performed for acute hemorrhage situations is still controversially discussed. Although the forced administration of crystalloids and colloids has been and still is practiced, nowadays there are good arguments that a cautious infusion of crystalloids may be initially sufficient. Saline should no longer be used for fluid resuscitation. The main argument for cautious fluid resuscitation is that no large prospective randomized clinical trials exist which have provided evidence of improved survival when fluid resuscitation is applied in an aggressive manner. The explanation that no positive effect has so far been observed is that fluid resuscitation is thought to boost bleeding by increasing blood pressure and dilutional coagulopathy. Nevertheless, national and international guidelines recommend that fluid resuscitation should be applied at the latest when hemorrhage causes hemodynamic instability. Consideration should be given to the fact that damage control resuscitation per se will neither improve already reduced tissue perfusion nor hemostasis. In acute and possibly rapidly progressing hypovolemic shock, colloids can be used. The third and fourth generations of hydroxyethyl starch (HES) are safe and effective if used correctly and within prescribed limits. If fluid resuscitation is applied with ongoing re-evaluation of the parameters which determine oxygen supply, it should be possible to keep fluid resuscitation restricted without causing undesirable side effects and also to administer a sufficient quantity so that survival of patients is ensured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Adams HA (Federführender Autor) (2005) Sprecher der IAG Schock der DIVI. Zur Diagnostik und Therapie der Schockformen – Empfehlungen der Interdisziplinären Arbeitsgruppe Schock der DIVI – Teil II Hypovolämischer Schock. Anasthesiol Intensivmed 4:111–124

    Google Scholar 

  2. Annane D, Siami S, Jaber S et al (2013) Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA 310(17):1809–1817

    PubMed  CAS  Google Scholar 

  3. Appelman MH, Barneveld LJ van, Romijn JW et al (2011) The impact of balanced hydroxylethyl starch cardiopulmonary bypass priming solution on the fibrin part of clot formation: ex vivo rotation thromboelastometry. Perfusion 26(3):175–180

    PubMed  Google Scholar 

  4. Balogh Z, McKinley BA, Cocanour CS et al (2003) Supranormal trauma resuscitation causes more cases of abdominal compartment syndrome. Arch Surg 138(6):637–642

    PubMed  Google Scholar 

  5. Barriot P, Riou B (1987) Hemorrhagic shock with paradoxical bradycardia. Intensive Care Med 13:203–217

    PubMed  CAS  Google Scholar 

  6. Battison C, Andrews PJ, Graham C, Petty T (2005) Randomized, controlled trial on the effect of a 20 % mannitol solution and a 7.5 % saline/6 % dextran solution on increased intracranial pressure after brain injury. Crit Care Med 33(1):196–202

    PubMed  CAS  Google Scholar 

  7. Becker BF, Chappell D, Jacob M (2010) Endothelial glycocalyx and coronary vascular permeability: the fringe benefit. Basic Res Cardiol 105(6):687–701

    PubMed  CAS  Google Scholar 

  8. Bickell WH, Wall MJ Jr, Pepe PE et al (1994) Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med 331(17):1105–1109

    PubMed  CAS  Google Scholar 

  9. Biffl WL, Moore EE, Burch JM et al (2001) Secondary abdominal compartment syndrome is a highly lethal event. Am J Surg 182(6):645–648

    PubMed  CAS  Google Scholar 

  10. Bishop MH, Shoemaker WC, Appel PL et al (1995) Prospective, randomized trial of survivor values of cardiac index, oxygen delivery, and oxygen consumption as resuscitation endpoints in severe trauma. J Trauma 38(5):780–787

    PubMed  CAS  Google Scholar 

  11. Boerema I, Meyne NG, Brummelkamp WH et al (1959) Life without blood (a study of influence of high atmospheric pressure and hypothermia on dilution of blood). J Cardiovasc Surg 13:133–146

    Google Scholar 

  12. Boerema I (1965) The use of hyperbaric oxygen. Am Heart J 69(3):289–291

    PubMed  CAS  Google Scholar 

  13. Bolliger D, Görlinger K, Tanaka KA (2010) Pathophysiology and treatment of coagulopathy in massive hemorrhage and hemodilution. Anesthesiology 113(5):1205–1219

    PubMed  Google Scholar 

  14. Brasel KJ, Guse C, Gentilello LM, Nirula R (2007) Heart rate: is it truly a vital sign? J Trauma 62:812–817

    PubMed  Google Scholar 

  15. Brunkhorst FM, Engel C, Bloos F et al (2008) Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358(2):125–139

    PubMed  CAS  Google Scholar 

  16. Brunkhorst FM, Gastmeier P, Kern W et al (2010) Prävention, Diagnose, Therapie und Nachsorge der Sepsis. 1. Revision der S-2k Leitlinien der Deutschen Sepsis-Gesellschaft e. V. (DSG) und der Deutschen Interdisziplinären Vereinigung für Intensiv- und Notfallmedizin (DIVI). Internist 51(7):925–932

    PubMed  CAS  Google Scholar 

  17. Bulger EM, Jurkovich GJ, Nathens AB et al (2008) Hypertonic resuscitation of hypovolemic shock after blunt trauma: a randomized controlled trial. Arch Surg 143(2):139–148

    PubMed  Google Scholar 

  18. Bunn F, Roberts I, Tasker R, Akpa E (2004) Hypertonic versus near isotonic crystalloid for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev 3:CD002045

    PubMed  Google Scholar 

  19. Bunn F, Trivedi D, Ashraf S (2011) Colloid solutions for fluid resuscitation. Cochrane Database Syst Rev 16(3):CD001319

    Google Scholar 

  20. Campagna J, Carter C (2003) Clinical relevance of the Bezold-Jarisch reflex. Anesthesiology 98:1250–1260

    PubMed  Google Scholar 

  21. Carl M, Alms A, Braun J et al (2010) S3 guidelines for intensive care in cardiac surgery patients: hemodynamic monitoring and cardiocirculary system. Ger Med Sci 8:Doc12

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Chappell D, Jacob M, Becker BF et al (2008) Expedition Glykokalyx. Ein neu entdecktes „great barrier reef“. Anaesthesist 57(10):959–969

    PubMed  CAS  Google Scholar 

  23. Chappell D, Jacob M, Hofmann-Kiefer K et al (2008) A rational approach to perioperative fluid therapy. Anesthesiology 109:723–740

    PubMed  Google Scholar 

  24. Chappell D, Jacob M (2013) Hydroxyethyl starch – the important of being earnest. Scand J Trauma Resusc Emerg Med 21:61

    PubMed  PubMed Central  Google Scholar 

  25. Chesnut RM, Marshall LF, Klauber MR et al (1993) The role of secondary brain injury in determining outcome from severe head injury. J Trauma 34(2):216–222

    PubMed  CAS  Google Scholar 

  26. Cooper DJ, Myles PS, McDermott FT et al (2004) Prehospital hypertonic saline resuscitation of patients with hypotension and severe traumatic brain injury: a randomized controlled trial. JAMA 291(11):1350–1357

    PubMed  CAS  Google Scholar 

  27. Cotton BA, Jerome R, Collier BR et al (2009) Guidelines for prehospital fluid resuscitation in the injured patient. J Trauma 67(2):389–402

    PubMed  Google Scholar 

  28. Dalrymple-Hay M, Aitchison R, Collins P et al (1992) Hydroxyethyl starch induced acquired von Willebrand’s disease. Clin Lab Haematol 4:209–211

    Google Scholar 

  29. Damon L, Adams M, Stricker RB, Ries C (1987) Intracranial bleeding during treatment with hydroxyethyl starch. N Engl J Med 317:964–965

    PubMed  CAS  Google Scholar 

  30. De Jonge E, Levi M, Berends F et al (1998) Impaired hemostasis by intravenous administration of a gelatin-based plasma expander in human subjects. Thromb Haemost 79(2):286–290

    Google Scholar 

  31. De Jonge E, Levi M (2001) Effects of different plasma substitutes on blood coagulation: a comparative review. Crit Care Med 29(6):1261–1267

    Google Scholar 

  32. Dellinger RP, Levy MM, Rhodes A et al (2013) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 39(2):165–228

    PubMed  CAS  Google Scholar 

  33. Demetriades D, Chan LS, Bhasin P et al (1998) Relative bradycardia in patients with traumatic hypotension. J Trauma 45:534–549

    PubMed  CAS  Google Scholar 

  34. Deusch E, Thaler U, Kozek-Langenecker SA (2004) The effects of high molecular weight hydroxyethyl starch solutions on platelets. Anesth Analg 99(3):665–668

    PubMed  CAS  Google Scholar 

  35. Deutsche Gesellschaft für Unfallchirurgie (Hrsg) (2011) S-3 Leitlinie Polytrauma/Schwerverletzten Behandlung. AWMF Register 012/019. 01.07.2011. http://www.awmf.org/leitlinien/detail/ll/012-019.html

  36. Donati A, Loggi S, Preiser JC et al (2007) Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients. Chest 132(6):1817–1824

    PubMed  Google Scholar 

  37. Dorje P, Adhikary G, Tempe DK (2000) Avoiding iatrogenic hyperchloremic acidosis – call for a new crystalloid fluid. Anesthesiology 92(2):625–626

    PubMed  CAS  Google Scholar 

  38. Dutton RP, Mackenzie CF, Scalea TM (2002) Hypotensive resuscitation during active hemorrhage: impact on in-hospital mortality. J Trauma 52(6):1141–1146

    PubMed  Google Scholar 

  39. Eastridge BJ, Salinas J, McManus JG et al (2007) Hypotension begins at 110 mmHg: redefining „hypotension“ with data. J Trauma 63:291–299

    PubMed  Google Scholar 

  40. Entholzner EK, Mielke LL, Calatzis AN et al (2000) Coagulation effects of a recently developed hydroxyethyl starch (HES 130/0.4) compared to hydroxyethyl starches with higher molecular weight. Acta Anaesthesiol Scand 44(9):1116–1121

    PubMed  CAS  Google Scholar 

  41. Falk JL, Rackow E, Astiz M, Weil MH (1988) Fluid resuscitation in shock. J Cardiothor Anesth 2(6):33–38

    Google Scholar 

  42. Finfer S, Bellomo R, Boyce N et al (2004) A comparison of albumin and saline for fluid resuscitation in the intensive care unit. SAFE Study Investigators. N Engl J Med 350(22):2247–2256

    PubMed  CAS  Google Scholar 

  43. Fishman AP (1973) Shock lung: a distinctive nonentity. Circulation 47(5):921–923

    PubMed  CAS  Google Scholar 

  44. Fries D, Innerhofer P, Perger P et al (2010) Coagulation management in trauma-related massive bleeding. – Recommendations of the Task Force for Coagulation (AGPG) of the Austrian Society of Anesthesiology, Resucitation and Intensive Care Medicine (OGARI). Anasthesiol Intensivmed Notfallmed Schmerzther 45(9):552–561

    PubMed  Google Scholar 

  45. Fuller G, Hasler RM, Mealing N et al (2014) The association between admission systolic blood pressure and mortality in significant traumatic brain injury: a multi-centre cohort study. Injury 45(3):612–617

    PubMed  Google Scholar 

  46. Futier E, Vallet B (2010) Inotropes in goal-directed therapy: do we need „goals“? Crit Care 14(5):1001

    PubMed  PubMed Central  Google Scholar 

  47. Guidet B, Martinet O, Boulain T et al (2012) Assessment of hemodynamic efficacy and safety of 6 % hydroxyethylstarch 130/0.4 vs. 0.9 % NaCl fluid replacement in patients with severe sepsis: the CRYSTMAS study. Crit Care 16(3):R94

    PubMed  PubMed Central  Google Scholar 

  48. Gutierrez G, Reines HD, Wulf-Gutierrez ME (2004) Clinical review: hemorrhagic shock. Crit Care 8(5):373–381

    PubMed  PubMed Central  Google Scholar 

  49. Hamilton-Davies C, Mythen MG, Salmon JB et al (1997) Comparison of commonly used clinical indicators of hypovolaemia with gastrointestinal tonometry. Intensive Care Med 23(3):276–281

    PubMed  CAS  Google Scholar 

  50. Hampton DA, Fabricant LJ, Differding J et al (2013) Prehospital intravenous fluid is associated with increased survival in trauma patients. J Trauma Acute Care Surg 75(1 Suppl 1):S9–S15

    PubMed  PubMed Central  Google Scholar 

  51. Hartog CS, Bauer M, Reinhart K (2011) The efficacy and safety of colloid resuscitation in the critically ill. Anesth Analg 112(1):156–164

    PubMed  CAS  Google Scholar 

  52. Hasler RM, Nuesch E, Jüni P et al (2011) Systolic blood pressure below 110 mmHg is associated with increased mortality in blunt major trauma patients: multicentre cohort study. Resuscitation 82:1202–1207

    PubMed  Google Scholar 

  53. Helm M, Hauke J, Kohler J, Lampl L (2013) Das Konzept der „small volume resuscitation“ im Rahmen des präklinischen Traumamanagements. Unfallchirurg 116:326–331

    PubMed  CAS  Google Scholar 

  54. Holcomb JB, Jenkins D, Rhee P et al (2007) Damage control resuscitation: directly addressing the early coagulopathy of trauma. J Trauma 62(2):307–310

    PubMed  Google Scholar 

  55. Hussmann B, Taeger G, Lefering R et al (2011) TraumaRegister der Deutschen Gesellschaft für Unfallchirurgie. Letalität und Outcome beim Mehrfachverletzten nach schwerem Abdominal- und Beckentrauma. Einfluss der präklinischen Volumengabe – eine Auswertung von 604 Patienten des TraumaRegisters der DGU. Unfallchirurg 114(8):705–712

    PubMed  CAS  Google Scholar 

  56. Innerhofer P, Fries D, Margreiter J et al (2002) The effects of perioperatively administered colloids and crystalloids on primary platelet-mediated hemostasis and clot formation. Anesth Analg 95(4):858–865

    PubMed  Google Scholar 

  57. Jacob M, Rehm M, Orth V et al (2003) Exact measurement of the volume effect of 6 % hydroxyethyl starch 130/0.4 (Voluven) during acute preoperative normovolemic hemodilution. Anaesthesist 52:896–904

    PubMed  CAS  Google Scholar 

  58. Jacob M, Bruegger D, Rehm M et al (2006) Contrasting effects of colloid and crystalloid resuscitation fluids on cardiac vascular permeability. Anesthesiology 104(6):1223–1231

    PubMed  CAS  Google Scholar 

  59. Jacob M, Chappell D, Rehm M (2007) Clinical update: perioperative fluid management. Lancet 369(9578):1984–1986

    PubMed  Google Scholar 

  60. Jacob M, Bruegger D, Rehm M et al (2007) The endothelial glycocalyx affords compatibility of Starling’s principle and high cardiac interstitial albumin levels. Cardiovasc Res 73(3):575–586

    PubMed  CAS  Google Scholar 

  61. Jacob M, Chapell D (2009) Mythen und Fakten der perioperativen Infusionstherapie. Anasth Intensivmed 50:358–376

    Google Scholar 

  62. Jacob M, Chappell D, Rehm M (2009) The ‚third space’-fact or fiction? Best Pract Res Clin Anaesthesiol 23(2):145–157

    PubMed  Google Scholar 

  63. Jaeger M, Dengl M, Meixensberger J, Schuhmann MU (2010) Effects of cerebrovascular pressure reactivity-guided optimization of cerebral perfusion pressure on brain tissue oxygenation after traumatic brain injury. Crit Care Med 38(5):1343–1347

    PubMed  Google Scholar 

  64. James MF, Michell WL, Joubert IA et al (2011) Resuscitation with hydroxyethyl starch improves renal function and lactate clearance in penetrating trauma in a randomized controlled study: the FIRST trial (Fluids in Resuscitation of Severe Trauma). Br J Anaesth 107(5):693–702

    PubMed  CAS  Google Scholar 

  65. Jones PA, Andrews PJ, Midgley S et al (1994) Measuring the burden of secondary insults in head-injured patients during intensive care. J Neurosurg Anesthesiol 6(1):4–14

    PubMed  CAS  Google Scholar 

  66. Khan S, Brohi K, Chana M et al (2014) Hemostatic resuscitation is neither hemostatic nor resuscitative in trauma hemorrhage. J Trauma Acute Care Surg 76(3):561–567

    PubMed  CAS  Google Scholar 

  67. Kozek-Langenecker SA, Jungheinrich C, Sauermann W, Van der Linden P (2008) The effects of hydroxyethyl starch 130/0.4 (6 %) on blood loss and use of blood products in major surgery: a pooled analysis of randomized clinical trials. Anesth Analg 107(2):382–390

    PubMed  CAS  Google Scholar 

  68. Krappweis J, Diesinger C (2013) Hydroxyethylstärke (HES): Start eines europäischen Risikobewertungsverfahrens. BfArM Bulletin Arzneimittelsicherheit 1:3–6

    Google Scholar 

  69. Kwan I, Bunn F, Roberts I, WHO Pre-Hospital Trauma Care Steering Committee (2009) Timing and volume of fluid administration for patients with bleeding. Cochrane Database Syst Rev 3:CD002245

    Google Scholar 

  70. Lamke LO, Liljedahl SO (1976) Plasma volume changes after infusion of various plasma expanders. Resuscitation 5(2):93–102

    PubMed  CAS  Google Scholar 

  71. Laubenthal H (1997) BSE und Heparin- bzw. Gelatinepräparate. Anaesthesist 46:253–254

    PubMed  CAS  Google Scholar 

  72. Laxenaire MC, Charpentier C, Feldmann L (1994) Réactions anaphylactoides aux substituts colloidaux du plasma: incidence de risque, mécanismes. Ann Fr Anesth Reanim 13:301–310

    PubMed  CAS  Google Scholar 

  73. Levi M, Jonge ED (2007) Clinical relevance of the effects of plasma expanders on coagulation. Semin Thromb Hemost 33(8):810–815

    PubMed  CAS  Google Scholar 

  74. Ley EJ, Salim A, Kohanzadeh S et al (2009) Relative bradycardia in hypotensive trauma patients: a reappraisal. J Trauma 67(5):1051–1054

    PubMed  Google Scholar 

  75. Lieberman JA, Weiskopf RB, Kelley SD et al (2000) Critical oxygen delivery in conscious humans is less than 7.3 ml O2 × kg(− 1) × min(− 1). Anesthesiology 92(2):407–413

    PubMed  CAS  Google Scholar 

  76. Lier H, Krep H, Schöchl H (2009) Coagulation management in the treatment of multiple trauma. Anaesthesist 58(10):1010–1026

    PubMed  CAS  Google Scholar 

  77. Little RA, Krikman E, Dricoll P et al (1995) Preventable deaths after injury: why are the traditional ‚vital‘ signs poor indicators of blood loss? J Accid Emerg Med 12(1):1–14

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Lobo DN, Stanga Z, Aloysius MM et al (2010) Effect of volume loading with 1 liter intravenous infusions of 0.9 % saline, 4 % succinylated gelatine (Gelofusine) and 6 % hydroxyethyl starch (Voluven) on blood volume and endocrine responses: a randomized, three-way crossover study in healthy volunteers. Crit Care Med 38(2):464–470

    PubMed  CAS  Google Scholar 

  79. Lobo SM, Salgado PF, Castillo VG et al (2000) Effects of maximizing oxygen delivery on morbidity and mortality in high-risk surgical patients. Crit Care Med 28(10):3396–3404

    PubMed  CAS  Google Scholar 

  80. Mackey DC, Cerpenter RL, Thompson GE et al (1989) Bradycardia and asystole during spinal anaesthesia: a report of three cases without morbidity. Anesthesiology 70:866–868

    PubMed  CAS  Google Scholar 

  81. Mahmood A, Gosling P, Vohra RK (2007) Randomized clinical trial comparing the effects on renal function of hydroxyethyl starch or gelatine during aortic aneurysm surgery. Br J Surg 94(4):427–433

    PubMed  CAS  Google Scholar 

  82. Maier S, Holz-Hölzl C, Pajk W et al (2009) Microcirculatory parameters after isotonic and hypertonic colloidal fluid resuscitation in acute hemorrhagic shock. J Trauma 66(2):337–345

    PubMed  CAS  Google Scholar 

  83. Manley G, Knudsen MM, Morabito D et al (2001) Hypotension, hypoxia, and head injury: frequency, duration and consequences. Arch Surg 136:1118–1123

    PubMed  CAS  Google Scholar 

  84. Mardel SN, Saunders FM, Allen H et al (1998) Reduced quality of clot formation with gelatin-based plasma substitutes. Br J Anaesth 80(2):204–207

    PubMed  CAS  Google Scholar 

  85. Mittermayr M, Streif W, Haas T et al (2007) Hemostatic changes after crystalloid or colloid fluid administration during major orthopedic surgery: the role of fibrinogen administration. Anesth Analg 105(4):905–917

    PubMed  CAS  Google Scholar 

  86. Mittermayr M, Streif W, Haas T et al (2008) Effects of colloid and crystalloid solutions on endogenous activation of fibrinolysis and resistance of polymerized fibrin to recombinant tissue plasminogen activator added ex vivo. Br J Anaesth 100(3):307–314

    PubMed  CAS  Google Scholar 

  87. Morrison LJ, Baker AJ, Rhind SG et al (2011) The Toronto prehospital hypertonic resuscitation - head injury and multiorgan dysfunction trial: feasibility study of a randomized controlled trial. J Crit Care 26(4):363–372

    PubMed  Google Scholar 

  88. Myburgh JA, Finfer S, Bellomo R et al (2012) Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med 367(20):1901–1911

    PubMed  CAS  Google Scholar 

  89. Myburgh JA, Finfer S, Billot L, CHEST Investigators (2013) Hydroxyethyl starch or saline in intensive care. N Engl J Med 368(8):775

    PubMed  CAS  Google Scholar 

  90. Neff TA, Doelberg M, Jungheinrich C et al (2003) Repetitive large-dose infusion of the novel hydroxyethyl starch 130/0.4 in patients with severe head injury. Anesth Analg 96(5):1453–1459

    PubMed  CAS  Google Scholar 

  91. Ogilvie MP, Pereira BM, McKenney MG et al (2010) First report on safety and efficacy of hetastarch solution for initial fluid resuscitation at a level 1 trauma center. J Am Coll Surg 210(5):870–880, 880–882

    PubMed  Google Scholar 

  92. Perel P, Roberts I (2011) Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev 3:CD000567

    PubMed  Google Scholar 

  93. Perner A, Haase N, Guttormsen AB et al (2012) Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med 367(2):124–134

    PubMed  CAS  Google Scholar 

  94. Pinsky MR (2007) Hemodynamic evaluation and monitoring in the ICU. Chest 132(6):2020–2029

    PubMed  Google Scholar 

  95. Price HL, Deutsch S, Marshall BE et al (1966) Hemodynamic and metabolic effects of hemorrhage in man, with particular reference to the splanchnic circulation. Circ Res 18(5):469–474

    PubMed  CAS  Google Scholar 

  96. Pries AR, Secomb TW, Gaehtgens P (2000) The endothelial surface layer. Pflugers Arch 440(5):653–666

    PubMed  CAS  Google Scholar 

  97. Raum MR, Waydhas C (2009) Präklinische Volumentherapie bei Trauma. Notfall Rettungsmed 12:188–192

    Google Scholar 

  98. Rehm M, Haller M, Brechtelsbauer H et al (1998) Changes in plasma volume in immediate pre- and postoperative periods in patients with major gynecologic surgery. Infusionsther Transfusionsmed 25:222–228

    Google Scholar 

  99. Rehm M, Orth V, Kreimeier U et al (2000) Changes in intravascular volume during acute normovolemic hemodilution and intraoperative retransfusion in patients with radical hysterectomy. Anesthesiology 92:657–664

    PubMed  CAS  Google Scholar 

  100. Rehm M, Orth VH, Kreimeier U et al (2001) Changes in blood volume during acute normovolemic hemodilution with 5 % albumin or 6 % hydroxyethyl starch and intraoperative retransfusion. Anaesthesist 50:569–579

    PubMed  CAS  Google Scholar 

  101. Rehm M, Orth VH, Weninger E et al (2001) Acute „normovolemic“ hemodilution with 3.5 % polygel (Haemaccel) for patients in the Wertheim-Meigs-operation. Blood loss of 87 % blood volume without perioperative blood transfusion. Anaesthesist 50(8):580–584

    PubMed  CAS  Google Scholar 

  102. Rehm M, Zahler S, Lötsch M et al (2004) Endothelial glycocalyx as an additional barrier determining extravasation of 6 % hydroxyethyl starch or 5 % albumin solutions in the coronary vascular bed. Anesthesiology 100(5):1211–1223

    PubMed  CAS  Google Scholar 

  103. Rehm M, Bruegger D, Christ F et al (2007) Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation 116(17):1896–1906

    PubMed  CAS  Google Scholar 

  104. Reid F, Lobo DN, Williams RN et al (2003) (Ab)normal saline and physiological Hartman’s solution: a randomized double-blind crossover study. Clin Sci 104:17–24

    PubMed  CAS  Google Scholar 

  105. Rhee P, Wang D, Ruff P et al (2000) Human neutrophil activation and increased adhesion by various resuscitation fluids. Crit Care Med 28(1):74–78

    PubMed  CAS  Google Scholar 

  106. Rhind SG, Crnko NT, Baker AJ et al (2010) Prehospital resuscitation with hypertonic saline-dextran modulates inflammatory, coagulation and endothelial activation marker profiles in severe traumatic brain injured patients. J Neuroinflammation 18(7):5

    Google Scholar 

  107. Riddez L, Johnson L, Hahn RG (1998) Central and regional hemodynamics during crystalloid fluid therapy after uncontrolled intra-abdominal bleeding. J Trauma 44(3):433–439

    PubMed  CAS  Google Scholar 

  108. Riddez L, Hahn RG, Brismar B et al (1997) Central and regional hemodynamics during acute hypovolemia and volume substitution in volunteers. Crit Care Med 25(4):635–640

    PubMed  CAS  Google Scholar 

  109. Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345(19):1368–1377

    PubMed  CAS  Google Scholar 

  110. SAFE Study Investigators, Australian and New Zealand Intensive Care Society Clinical Trials Group, Australian Red Cross Blood Service et al (2007) Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med 357(9):874–884

    Google Scholar 

  111. Sander-Jensen K, Secher NH, Bie P et al (1986) Vagal slowing of the heart during hemorrhage: observations from 20 consecutive patients. BMJ 292:364–366

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Sander-Jensen K, Marving J, Secher NH et al (1990) Does the decrease in heart rate prevent a detrimental decrease of the end systolic volume during central hypovolemia in man? Angiology 41:687–695

    PubMed  CAS  Google Scholar 

  113. Schabinski F, Oishi J, Tuche F et al (2009) Effects of a predominantly hydroxyethyl starch (HES)-based and a predominantly non HES-based fluid therapy on renal function in surgical ICU patients. Intensive Care Med 35(9):1539–1547

    PubMed  CAS  Google Scholar 

  114. Scheingraber S, Rehm M, Sehmisch C, Finsterer U (1999) Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology 90(5):1265–1270

    PubMed  CAS  Google Scholar 

  115. Schöchl H, Voelckel W (2010) Die Evidenz der Volumentherapie. „Aggressive“ Volumentherapie heute zunehmend kritisch betrachtet. Wien Klin Mag 13(1):12–14

    Google Scholar 

  116. Schortgen F, Girou E, Deye N et al (2008) The risk associated with hypertonic colloids in patients with shock. Intensive Care Med 34:2157–2168

    PubMed  Google Scholar 

  117. Secher NH, Sander Jensen K, Werner C et al (1984) Bradycardia during severe but reversible hypovolemic shock in man. Circ Shock 14:267–274

    PubMed  CAS  Google Scholar 

  118. Shoemaker WC, Montgomery ES, Kaplan E, Elwyn DH (1973) Physiologic patterns in surviving and nonsurviving shock patients. Use of sequential cardiorespiratory variables in defining criteria for therapeutic goals and early warning of death. Arch Surg 106(5):630–636

    PubMed  CAS  Google Scholar 

  119. Sossdorf M, Marx S, Schaarschmidt B et al (2009) HES 130/0.4 impairs haemostasis and stimulates pro-inflammatory blood platelet function. Crit Care 13(6):R208

    PubMed  PubMed Central  Google Scholar 

  120. Spahn DR, Bouillon B, Cerny V et al (2013) Management of bleeding following major trauma: an updated European guideline. Crit Care 17(2):R76

    PubMed  PubMed Central  Google Scholar 

  121. Stewart PA (1983) Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 61(12):1444–1461

    PubMed  CAS  Google Scholar 

  122. Struchen MA, Hannay HJ, Contant CF, Robertson CS (2001) The relation between acute physiological variables and outcome on the Glasgow Outcome Scale and Disability Rating Scale following severe traumatic brain injury. J Neurotrauma 18(2):115–125

    PubMed  CAS  Google Scholar 

  123. Swan HJ, Ganz W, Forrester J et al (1970) Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 283:447–451

    PubMed  CAS  Google Scholar 

  124. Traumaregister der Deutschen Gesellschaft für Unfallchirurgie. Jahresbericht 2013 für den Zeitraum bis Ende 2012. http://www.traumaregister.de/images/stories/downloads/jahresberichte/TR-DGU-Jahresbericht_2013.pdf

  125. Vassar MJ, Perry CA, Gannaway WL, Holcroft JW (1991) 7.5 % sodium chloride/dextran for resuscitation of trauma patients undergoing helicopter transport. Arch Surg 126(9):1065–1072

    PubMed  CAS  Google Scholar 

  126. Victorino GP, Battistella FD, Wisner DH (2003) Does tachycardia correlate with hypotension after trauma? J Am Coll Surg 196(5):679–684

    PubMed  Google Scholar 

  127. Wakim KG (1970) „Normal“ 0.9 % salt solution is neither „normal“ nor physiological. JAMA 214:1710

    PubMed  CAS  Google Scholar 

  128. Van der Linden P, James M, Mythen M, Weikopf RB (2013) Safety of modern starches used during surgery. Anesth Analg 116(1):35–48

    Google Scholar 

  129. Velmahos GC, Demetriades D, Shoemaker WC et al (2000) Endpoints of resuscitation of critically injured patients: normal or supranormal? A prospective randomized trial. Ann Surg 232(3):409–418

    PubMed  CAS  PubMed Central  Google Scholar 

  130. Weiskopf RB, Viele MK, Feiner J et al (1998) Human cardiovascular and metabolic response to acute, severe isovolemic anemia. JAMA 279(3):217–221

    PubMed  CAS  Google Scholar 

  131. Wisner DH, Sturm JA (1986) Controversies in the fluid management of post-traumatic lung disease. Injury 17(5):295–300

    PubMed  CAS  Google Scholar 

  132. Wohlauer MV, Moore EE, Droz NM et al (2012) Hemodilution is not critical in the pathogenesis of the acute coagulopathy of trauma. J Surg Res 173(1):26–30

    PubMed  PubMed Central  Google Scholar 

  133. Yunos NM, Bellomo R, Hegarty C et al (2012) Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA 308(15):1566–1572

    PubMed  CAS  Google Scholar 

  134. Zander R (2009) Anforderungen an einen optimalen Volumenersatz. Anasth Intensivmed 50:348–357

    Google Scholar 

  135. Zander R (2010) Anaemia and massive bleeding apart from the aspect of oxygenation. Wien Klin Wochenschr 122(Suppl 5):S6–S8

    PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenskonflikt. M. Roessler, K. Bode und M. Bauer geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag enthält keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Roessler D.E.A.A., EDIC.

Addendum

Addendum

Am 04.09.2014, zum Zeitpunkt der Drucklegung des vorliegenden Beitrags „Volumentherapie bei Hämorrhagie“ wurde die „S3-Leitlinie Intravasale Volumentherapie beim Erwachsenen“ (AWMF-Register-Nr.: 001/020) veröffentlicht. Die S3-Leitlinie konnte im vorliegenden Beitrag daher nicht berücksichtigt werden. Gleichwohl entsprechen sich die zur Volumentherapie bei Hämorrhagie gemachten Empfehlungen im Wesentlichen. Die S3-Leitlinie zur intravasalen Volumentherapie geht detailliert auf den Stellenwert invasiver Methoden zur Diagnostik eines Volumenmangels, insbesondere auf den Stellenwert statischer, flussbasierter oder dynamischer Vorlastparameter ein. Der Leitthemenbeitrag „Volumentherapie bei Hämorrhagie“ beschränkt sich diesbezüglich im Wesentlichen auf Parameter, die schnell und fast jederzeit erhoben werden können. Der Stellenwert des ZVD ist – auch in der S3-Leitlinie – weiterhin kontrovers.

Die Autoren hoffen, dass der vorliegende Beitrag – zusammen mit der S3-Leitlinie – den interessierten Lesern eine Hilfestellung sein wird, um bei Patienten mit Hämorrhagie eine rational begründbare, sichere und effektive Volumenersatztherapie durchzuführen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roessler, M., Bode, K. & Bauer, M. Volumentherapie bei Hämorrhagie. Anaesthesist 63, 730–744 (2014). https://doi.org/10.1007/s00101-014-2377-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-014-2377-9

Schlüsselwörter

Keywords

Navigation