Skip to main content

Advertisement

Log in

Conservative management of osteoporotic vertebral fractures: an update

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Purpose

Adequate conservative management of osteoporotic vertebral fractures remains important in an aging population.

Methods

We performed a research of multiple databases and present important studies in this narrative review.

Results

The pertinent literature remains scarce and of mixed quality. However, trends are shown to support early mobilization, less rigid bracing and pharmaceutical secondary prevention.

Conclusion

There is insufficient data to recommend the optimal conservative management for osteoporotic vertebral fractures. As such high-quality studies need to be conducted to establish a solid course of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Svedbom A, Hernlund E, Ivergård M, et al. Osteoporosis in the European Union: a compendium of country-specific reports. Arch Osteoporos. 2013. doi:10.1007/s11657-013-0137-0.

    Google Scholar 

  2. Buchbinder R, Osborne RH, Ebeling PR, Wark JD, Mitchell P, Wriedt C, Graves S, Staples MP, Murphy B. A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures. N Engl J Med. 2009; 361:557–68.

  3. Kallmes DF, Comstock BA, Heagerty PJ, Turner JA, Wilson DJ, Diamond TH, Edwards R, Gray LA, Stout L, Owen S. A randomized trial of vertebroplasty for osteoporotic spinal fractures. N Engl J Med. 2009;361(6):596–7.

    Article  Google Scholar 

  4. AAOS. The treatment of symptomatic osteoporotic spinal compression fractures guideline and evidence report. Rosemont: American Academy of Orthopaedic Surgeons; 2010.

    Google Scholar 

  5. Liu J, Li X, Tang D, et al. Comparing pain reduction following vertebroplasty and conservative treatment for osteoporotic vertebral compression fractures: a meta-analysis of randomized controlled trials. Pain Phys. 2013;16:455–64.

    Google Scholar 

  6. Guo J-B, Zhu Y, Chen B-L, et al. Surgical versus non-surgical treatment for vertebral compression fracture with osteopenia: a systematic review and meta-analysis. PLoS One. 2015;10:e0127145. doi:10.1371/journal.pone.0127145.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen L-X, Li Y-L, Ning G-Z, et al. Comparative efficacy and tolerability of three treatments in old people with osteoporotic vertebral compression fracture: a network meta-analysis and systematic review. PLoS One. 2015;10:e0123153. doi:10.1371/journal.pone.0123153.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Anderson P, Froyshteter A, Tontz W. Meta-analysis of vertebral augmentation compared with conservative treatment for osteoporotic spinal fractures. J Bone Miner Res. 2013;28:372–82. doi:10.1002/jbmr.1762.

    Article  PubMed  Google Scholar 

  9. Kado DM, Browner WS, Palermo L, et al. Vertebral fractures and mortality in older women: a prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med. 1999;159:1215–20.

    Article  CAS  PubMed  Google Scholar 

  10. Ensrud KE, Blackwell TL, Fink HA, et al. What proportion of incident radiographic vertebral fractures in older men is clinically diagnosed and vice versa: a prospective study. J Bone Miner Res. 2016;31:1500–3. doi:10.1002/jbmr.2831.

    Article  PubMed  Google Scholar 

  11. Nevitt MC, Ettinger B, Black DM, Stone K, Jamal SA, Ensrud K, et al. The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med. 1998;128:793–800.

    Article  CAS  PubMed  Google Scholar 

  12. Sinnesael M, Claessens F, Boonen S, Vanderschueren D. Novel insights in the regulation and mechanism of androgen action on bone. Curr Opin Endocrinol Diabetes Obes. 2013;20:240. doi:10.1097/MED.0b013e32835f7d04.

    Article  CAS  PubMed  Google Scholar 

  13. Raisz L. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest. 2005;115:3318–25. doi:10.1172/JCI27071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ojo F, Snih S, Ray L, et al. History of fractures as predictor of subsequent hip and nonhip fractures among older Mexican Americans. J Natl Med Assoc. 2007;99:412–8.

    PubMed  PubMed Central  Google Scholar 

  15. Poole K, Compston J. Osteoporosis and its management. BMJ. 2006;333:1251–6. doi:10.1136/bmj.39050.597350.47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feskanich D, Rimm E, Giovannucci E, et al. Reproducibility and validity of food intake measurements from a semiquantitative food frequency questionnaire. J Am Diet Assoc. 1993;93:790–6. doi:10.1016/0002-8223(93)91754-E.

    Article  CAS  PubMed  Google Scholar 

  17. Kerstetter J, Kenny A, Insogna K. Dietary protein and skeletal health: a review of recent human research. Curr Opin Lipidol. 2011;22:16. doi:10.1097/MOL.0b013e3283419441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gaitanis I, Hadjipavlou A, Katonis P, et al. Balloon kyphoplasty for the treatment of pathological vertebral compressive fractures. Eur Spine J. 2005;14:250–60. doi:10.1007/s00586-004-0767-4.

    Article  PubMed  Google Scholar 

  19. Gaughen JR Jr, Jensen ME, Schweickert PA, et al. Lack of preoperative spinous process tenderness does not affect clinical success of percutaneous vertebroplasty. J Vasc Interv Radiol. 2002;13:1135–8.

    Article  PubMed  Google Scholar 

  20. Damilakis J, Adams J, Guglielmi G, Link T. Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol. 2010;20:2707–14. doi:10.1007/s00330-010-1845-0.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lin HH, Chou PH, Wang ST, et al. Determination of the painful level in osteoporotic vertebral fractures—retrospective comparison between plain film, bone scan, and magnetic resonance imaging. J Chin Med Assoc. 2015;78(12):714–8.

    Article  PubMed  Google Scholar 

  22. Richards P, George J, Metelko M, Brown M. Spine computed tomography doses and cancer induction. Spine. 2010;35:430. doi:10.1097/BRS.0b013e3181cdde47.

    Article  PubMed  Google Scholar 

  23. Takahashi S, Hoshino M, Takayama K, et al. Time course of osteoporotic vertebral fractures by magnetic resonance imaging using a simple classification: a multicenter prospective cohort study. Osteoporos Int. 2016. doi:10.1007/s00198-016-3737-x.

    Google Scholar 

  24. Ahn S, Ryu K, Park J, et al. Early Bone marrow edema pattern of the osteoporotic vertebral compression fracture: can be predictor of vertebral deformity types and prognosis? J Korean Neurosurg S. 2016;59:137–42. doi:10.3340/jkns.2016.59.2.137.

    Article  Google Scholar 

  25. Kaup M, Wichmann J, Scholtz J-E, et al. Dual-energy CT-based display of bone marrow edema in osteoporotic vertebral compression fractures: impact on diagnostic accuracy of radiologists with varying levels of experience in correlation to MR imaging. Radiology. 2016;280:510–9. doi:10.1148/radiol.2016150472.

    Article  PubMed  Google Scholar 

  26. Zhao QM, Gu XF, Liu ZT, Cheng L. The value of radionuclide bone imaging in defining fresh fractures among osteoporotic vertebral compression fractures. J Craniofac Surg. 2016;27(3):745–8.

    PubMed  Google Scholar 

  27. Porter RW, Ralston SH. Pharmacological of back pain syndromes. Drugs. 1994;48(2):189–98.

    Article  CAS  PubMed  Google Scholar 

  28. Dannhardt G, Kiefer W. Cyclooxygenase inhibitors—current status and future prospects. Eur J Med Chem. 2001;36:109–26. doi:10.1016/S0223-5234(01)01197-7.

    Article  CAS  PubMed  Google Scholar 

  29. Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem. 2000;69:145–82. doi:10.1146/annurev.biochem.69.1.145.

    Article  CAS  PubMed  Google Scholar 

  30. Kearney P, Baigent C, Godwin J, et al. Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials. BMJ. 2006;332:1302–8. doi:10.1136/bmj.332.7553.1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rzewuska M, Ferreira M, McLachlan A, et al. The efficacy of conservative treatment of osteoporotic compression fractures on acute pain relief: a systematic review with meta-analysis. Eur Spine J. 2015;24:702–14. doi:10.1007/s00586-015-3821-5.

    Article  PubMed  Google Scholar 

  32. Trelle S, Reichenbach S, Wandel S, Hildebrand P, Tschannen B, Villiger PM, Egger M, Jüni P. Cardiovascular safety of non-steroidal anti-inflammatory drugs: network meta-analysis. BMJ. 2011;342:c7086. doi:10.1136/bmj.c7086.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vestergaard P, Hermann P, Jensen J-E, et al. Effects of paracetamol, non-steroidal anti-inflammatory drugs, acetylsalicylic acid, and opioids on bone mineral density and risk of fracture: results of the Danish Osteoporosis Prevention Study (DOPS). Osteoporos Int. 2011;23:1255–65. doi:10.1007/s00198-011-1692-0.

    Article  PubMed  Google Scholar 

  34. Vorsanger GJ, Farell J, Xiang J. Tapentadol, oxycodone or placebo for acute pain of vertebral compression fractures: a randomized phase IIIb study. Pain Manag. 2013;3(2):109–18.

    Article  PubMed  Google Scholar 

  35. Benbouzid M, Gavériaux-Ruff C, Yalcin I, et al. Delta-opioid receptors are critical for tricyclic antidepressant treatment of neuropathic allodynia. Biol Psychiatr. 2008;63:633–6. doi:10.1016/j.biopsych.2007.06.016.

    Article  CAS  Google Scholar 

  36. Patel R, Dickenson AH. Mechanisms of the gabapentinoids and α 2 δ-1 calcium channel subunit in neuropathic pain. Pharmacol Res Perspect. 2016;4:e00205. doi:10.1002/prp2.205.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Moore R, Straube S, Wiffen P, et al. Pregabalin for acute and chronic pain in adults. Cochrane Libr. 2009; CD007076. doi:10.1002/14651858.CD007076.pub2.

  38. DePalma M, Bhargava A, Slipman C. A critical appraisal of the evidence for selective nerve root injection in the treatment of lumbosacral radiculopathy. Arch Phys Med Rehab. 2005;86:1477–83. doi:10.1016/j.apmr.2005.01.006.

    Article  Google Scholar 

  39. Newman M, Minns Lowe C, Barker K. Spinal orthoses for vertebral osteoporosis and osteoporotic vertebral fracture: a systematic review. Arch Phys Med Rehabil. 2016;97(6):1013–25.

    Article  PubMed  Google Scholar 

  40. Jin Y, Lee J. Effect of brace to osteoporotic vertebral fracture: a meta-analysis. J Korean Med Sci. 2016;31:1641–9. doi:10.3346/jkms.2016.31.10.1641.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Francis RM, Baillie SP, Chuck AJ, et al. Acute and long-term management of patients with vertebral fractures. QJM. 2004;97:63–74. doi:10.1093/qjmed/hch012.

    Article  CAS  PubMed  Google Scholar 

  42. Bleeker M, Groot P, Rongen G, et al. Vascular adaptation to deconditioning and the effect of an exercise countermeasure: results of the Berlin Bed Rest study. J Appl Physiol. 2005;99:1293–300. doi:10.1152/japplphysiol.00118.2005.

    Article  PubMed  Google Scholar 

  43. Ellis H. Calcitonin. Brit Med J. 1968;3:3–4.

    Article  Google Scholar 

  44. Giangregorio LM, Macintyre NJ, Thabane L, et al. Exercise for improving outcomes after osteoporotic vertebral fracture. Cochrane Database Syst Rev. 2013; CD008618. doi:10.1002/14651858.CD008618.pub2.

  45. Bennell KL, Matthews B, Greig A, Briggs A, Kelly A, Sherburn M, et al. Effects of an exercise and manual therapy program on physical impairments, function and quality-of-life in people with osteoporotic vertebral fracture: a randomised, single-blind controlled pilot trial. BMC Musculoskelet Disord. 2010;11:36.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Malmros B, Mortensen L, Jensen MB, Charles P. Positive effects of physiotherapy on chronic pain and performance in osteoporosis. Osteoporos Int. 1998;8(3):215–21.

    Article  CAS  PubMed  Google Scholar 

  47. Gold DT, Shipp KM, Pieper CF, Duncan PW, Martinez S, Lyles KW. Group treatment improves trunk strength and psychological status in older women with vertebral fractures: results of a randomized, clinical trial. J Am Geriatr Soc. 2004;52(9):1471–8.

    Article  PubMed  Google Scholar 

  48. Sinaki M, Itoi E, Wahner H, et al. Stronger back muscles reduce the incidence of vertebral fractures: a prospective 10 year follow-up of postmenopausal women. Bone. 2002;30:836–41. doi:10.1016/S8756-3282(02)00739-1.

    Article  CAS  PubMed  Google Scholar 

  49. Sinaki M, BreyRH Hughes CA, et al. Significant reduction in risk of falls and pain in osteoporotic-kyphotic women through a spinal proprioceptive extension exercise dynamic (SPEED) program. Mayo Clin Proc. 2005. doi:10.4065/80.7.849.

    PubMed  Google Scholar 

  50. Kemmler W, Kohl M, von Stengel S. Long-term effects of exercise in postmenopausal women: a 16-year result of the Erlangen Fitness and Osteoporosis Prevention Study (EFOPS). Menopause; 2016. doi:10.1097/GME.0000000000000720.

  51. Itoi E, et al. Effect of back-strengthening exercise on posture in healthy women 49 to 65 years of age. Mayo Clin Proc. 1994;69(11):1054–9.

    Article  CAS  PubMed  Google Scholar 

  52. Barker KL, Javaid MK, Newman M, et al. Physiotherapy rehabilitation for osteoporotic vertebral fracture (PROVE): study protocol for a randomised controlled trial. Trials. 2014;15:22. doi:10.1186/1745-6215-15-22.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jansen J, Bergman G, Huels J, Olson M. The efficacy of bisphosphonates in the prevention of vertebral, hip, and nonvertebral-nonhip fractures in osteoporosis: a network meta-analysis. Semin Arthritis Rheum. 2011;40(275–284):e2. doi:10.1016/j.semarthrit.2010.06.001.

    Google Scholar 

  54. Ross PD. Clinical consequences of vertebral fractures. Am J Med. 1997; 103(2a):30S–42S.

    Article  CAS  PubMed  Google Scholar 

  55. Knopp J, Diner B, Blitz M, et al. Calcitonin for treating acute pain of osteoporotic vertebral compression fractures: a systematic review of randomized, controlled trials. Osteoporos Int. 2005;16:1281–90. doi:10.1007/s00198-004-1798-8.

    Article  CAS  PubMed  Google Scholar 

  56. Endo N, Fujino K, Doi T, et al. Effect of elcatonin versus nonsteroidal anti-inflammatory medications for acute back pain in patients with osteoporotic vertebral fracture: a multiclinic randomized controlled trial. J Bone Miner Metab. 2016. doi:10.1007/s00774-016-0765-8.

    Google Scholar 

  57. Bolland MJ, Grey AB, Gamble GD, Reid IR. Effect of osteoporosis treatment on mortality: a meta-analysis. J Clin Endocrinol Metab. 2010. doi:10.1210/jc.2009-0852.

  58. Grey A, Bolland MJ. The effect of treatments for osteoporosis on mortality. Osteoporos Int. 2013. doi:10.1007/s00198-012-2176-6

  59. Brandi ML. Sustained vertebral antifracture efficacy of oral anti-osteoporotic therapies in postmenopausal osteoporosis. Curr Med Res Opin. 2010. doi:10.1185/03007995.2010.519658.

    PubMed  Google Scholar 

  60. Ha K-Y, Park K-S, Kim S-I, Kim Y-H. Does bisphosphonate-based anti-osteoporosis medication affect osteoporotic spinal fracture healing? Osteoporos Int. 2016;27:483–8. doi:10.1007/s00198-015-3243-6.

    Article  CAS  PubMed  Google Scholar 

  61. Chen Y-C, Lin W-C. Can anti-osteoporotic therapy reduce adjacent fracture in magnetic resonance imaging-proven acute osteoporotic vertebral fractures? BMC Musculoskelet Dis. 2016;17:151. doi:10.1186/s12891-016-1003-1.

    Article  Google Scholar 

  62. Min Y-K. Update on denosumab treatment in postmenopausal women with osteoporosis. Endocrinol Metab. 2015;30:19–26. doi:10.3803/enm.2015.30.1.19.

    Article  Google Scholar 

  63. Capozzi A, Lello S, Pontecorvi A. The inhibition of RANK-ligand in the management of postmenopausal osteoporosis and related fractures: the role of denusomab. Gynecol Endocrinol. 2015. doi:10.3109/09513590.2014.892067.

    Google Scholar 

  64. Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434–41. doi:10.1056/NEJM200105103441904.

    Article  CAS  PubMed  Google Scholar 

  65. Park J-H, Kang K-C, Shin D-E, et al. Preventive effects of conservative treatment with short-term teriparatide on the progression of vertebral body collapse after osteoporotic vertebral compression fracture. Osteoporos Int. 2014;25:613–8. doi:10.1007/s00198-013-2458-7.

    Article  PubMed  Google Scholar 

  66. Fahrleitner-Pammer A, Langdahl BL, Marin F, et al. Fracture rate and back pain during and after discontinuation of teriparatide: 36-month data from the European Forsteo Observational Study (EFOS). Osteoporos Int. 2011;22:2709–19. doi:10.1007/s00198-010-1498-5.

    Article  CAS  PubMed  Google Scholar 

  67. Hoshino M, Tsujio T, Terai H, et al. Al impact of initial conservative treatment interventions on the outcomes of patients with osteoporotic vertebral fractures. Spine (Phila Pa 1976). 2013. doi:10.1097/BRS.0b013e31828ced9d.

  68. Bednar T, Heyde C, Bednar G, et al. Kyphoplasty for vertebral augmentation in the elderly with osteoporotic vertebral compression fractures: scenarios and review of recent studies. Clin Ther. 2013;35:1721–7. doi:10.1016/j.clinthera.2013.09.016.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Venmans A, Klazen CA, Lohle PNM, et al. Natural history of pain in patients with conservatively treated osteoporotic vertebral compression fractures: results from VERTOS II. Am J Neuroradiol. 2012;33:519–21. doi:10.3174/ajnr.A2817.

    Article  CAS  PubMed  Google Scholar 

  70. Voormolen MH, Mali WP, Lohle PN, et al. Percutaneous vertebroplasty compared with optimal pain medication treatment: short-term clinical outcome of patients with subacute or chronic painful osteoporotic vertebral compression fractures. The VERTOS study. AJNR Am J Neuroradiol. 2007;28:555–60.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Fleege.

Ethics declarations

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of interest

Andrei Slavici, Michael Rauschmann and Christoph Fleege declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slavici, A., Rauschmann, M. & Fleege, C. Conservative management of osteoporotic vertebral fractures: an update. Eur J Trauma Emerg Surg 43, 19–26 (2017). https://doi.org/10.1007/s00068-016-0747-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-016-0747-5

Keywords

Navigation