Skip to main content

Advertisement

Log in

The effect of Riluzole on functional recovery of locomotion in the rat sciatic nerve crush model

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Purpose

Peripheral nerve injury (PNI) is common disorder that represents more than 3 % of all traumatic injury cases. One type of PNI, sciatic nerve injury, leads to considerable motoneuron dysfunction. Because Riluzole is clinically approved for the treatment of motoneuron disease, we evaluated whether Riluzole treatment could enhance the nerve regeneration process and improve functional outcome after sciatic nerve crush in rats.

Methods

In acute treatment groups, a single dose of Riluzole (6 and 8 mg/kg) was administered intra-peritoneally 15 min after the crush nerve injury. In the chronic treatment groups, animals were treated with Riluzole (4 and 6 mg/kg/d) for 8 days. Sciatic functional index (SFI) was evaluated for 9 weeks after injury. Furthermore, electrophysiological and morphometric evaluations were performed at the 9th week following injury.

Results

Acute and chronic administrations of Riluzole immediately after sciatic nerve crush result in significantly delayed regeneration and reduced motor function outcome.

Conclusions

These findings suggest that early administration of even a single dose of Riluzole after sciatic nerve crush injury can delay motor function recovery. This effect may not depend on its anti-nociceptive activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Svennigsen AF, Dahlin LB. Repair of the peripheral nerve—remyelination that works. Brain Sci. 2013;2:1182–97.

    Article  Google Scholar 

  2. Wood M, Kemp S, Weber C, Borschel G, Gordon T. Outcome measures of peripheral nerve regeneration. Ann Anat. 2011;193:321–33.

    Article  PubMed  Google Scholar 

  3. Tator C, Fehlings M. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg. 1991;75:15–26.

    Article  CAS  PubMed  Google Scholar 

  4. Umebayashi D, Natsume A, Takeuchi H, Hara M, Nishimura Y, Fukuyama R, Wakabayashi T. Blockade of gap junction hemichannel protects secondary spinal cord injury from activated microglia-mediated glutamate exitoneurotoxicity. J Neurotrauma. 2014;31:1967–74.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wolf A, Stys P, Lusardi T, Meaney D, Smith D. Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. J Neurosci. 2001;21:1923–30.

    CAS  PubMed  Google Scholar 

  6. Choi D. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci. 1988;11:465–9.

    Article  CAS  PubMed  Google Scholar 

  7. Nagoshi N, Nakashima H, Fehlings M. Riluzole as a neuroprotective drug for spinal cord injury: from bench to bedside. Molecules. 2015;20:7775–89.

    Article  CAS  PubMed  Google Scholar 

  8. Doble A. The pharmacology and mechanism of action of Riluzole. Neurology. 1996;47:233–41.

    Article  Google Scholar 

  9. Miller RG, Mitchell J, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev. 2012;3:CD001447.

    Google Scholar 

  10. Schwartz G, Fehlings MG. Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: improved behavioral and neuroanatomical recovery with Riluzole. J Neurosurg. 2001;94:245–56.

    CAS  PubMed  Google Scholar 

  11. Wu Y, Satkunendrarajah K, Teng Y, Chow DS, Buttigieg J, Fehlings MG. Delayed postinjury administration of Riluzole is neuroprotective in a preclinical rodent model of cervical spinal cord injury. J Neurotrauma. 2013;30:441–52.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fehlings MG, Nakashima H, Nagoshi N, Chow DSL, Grossman RG, Kopjar B. Rationale, design and critical end points for the Riluzole in acute spinal cord injury study (RISCIS): a randomized, double-blinded, placebo-controlled parallel multi-center trial. Spinal Cord. 2015;54(1):8–15.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fehlings MG, Wilson JR, Karadimas SK, Arnold PM, Kopjar B. Clinical evaluation of a neuroprotective drug in patients with cervical spondylotic myelopathy undergoing surgical treatment: design and rationale for the CSM-protect trial. Spine. 2013;38:68–75.

    Article  Google Scholar 

  14. Pereira AC, Gray JD, Kogan JF, Davidson RL, Rubin TG, Okamoto M, Morrison JH, McEwen BS. Age and Alzheimer’s disease gene expression profiles reversed by the glutamate modulator Riluzole. Mol Psychiatry. 2016;21(5):722–9.

    Google Scholar 

  15. Fumagalli E, Funicello M, Rauen T, Gobbi M, Mennini T. Riluzole enhances the activity of glutamate transporters GLAST, GLT1 and EAAC1. Eur J Pharmacol. 2008;578:171–6.

    Article  CAS  PubMed  Google Scholar 

  16. Santos M, Dall’Onder L, Dalcin K, Souza D. Riluzole enhances glutamate uptake in rat astrocyte cultures. Cell Mol Neurobiol. 2004;24:123–8.

    Article  Google Scholar 

  17. Scheib J, Höke A. Advances in peripheral nerve regeneration. Nat Rev Neurol. 2013;9:668–76.

    Article  CAS  PubMed  Google Scholar 

  18. Pinter S, Gloviczki B, Szabo A, Marton G, Nogradi A. Increased survival and reinnervation of cervical motoneurons by Riluzole after avulsion of the C7 ventral root. J Neurotrauma. 2010;27:2273–82.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cabaj A, Urszula S. Riluzole treatment reduces motoneuron death induced by axotomy in newborn rats. J Neurotrauma. 2012;29:1506–17.

    Article  PubMed  Google Scholar 

  20. Costa H, Ciro F, Marcio P, Paulo R. Evaluation of the systemic use of Riluzole in post-traumatic facial nerve regeneration: experimental study in rabbits. Acta Otolaryngol. 2007;127:1222–5.

    Article  PubMed  Google Scholar 

  21. Medico M, Nicosia A, Grech M, Onesta M, Sessa G, Rampello L, Drago F. Riluzole restores motor activity in rats with post-traumatic peripheral neuropathy. Neurosci Lett. 2004;358:37–40.

    Article  CAS  PubMed  Google Scholar 

  22. Kaia Jiang, Yingc Zhuang, Minga Yan, Huia Chen, An-Qia Ge, Li Sun, Miao Bei. Effects of Riluzole on P2X7R expression in the spinal cord in rat model of neuropathic pain. Neurosci Lett. 2016;618:127–33.

    Article  Google Scholar 

  23. Pratt J, Rataud J, Bardot F, Roux M, Blanchard J, Laduron P, Stutzmann J. Neuroprotective actions of Riluzole in rodent models of global and focal cerebral ischaemia. Neurosci Lett. 1992;140:225–30.

    Article  CAS  PubMed  Google Scholar 

  24. Wahl F, Stutzmann J. Neuroprotective effects of Riluzole in neurotrauma models: a review. Vienna: Springer; 1999. p. 103–10.

    Google Scholar 

  25. Bain J, Mackinnon S, Hunter D. Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg. 1989;83:129–38.

    Article  CAS  PubMed  Google Scholar 

  26. Dijkstra J, Meek M, Robinson P, Gramsbergen A. Methods to evaluate functional nerve recovery in adult rats: walking track analysis and the withdrawal reflex. J Neurosci Methods. 2000;96:251–8.

    Article  Google Scholar 

  27. Oguzhanoglu A, Erdogan C, Tabak E, Cenikli U. Comparison of conduction velocities of nerve fibers to smaller and larger muscles in rats. Int J Neurosci. 2010;120:76–9.

    Article  PubMed  Google Scholar 

  28. Raimondo S, Fornaro M, Di Scipio F, Ronchi G, Giacobini-Robecchi M, Geuna S. Methods and protocols in peripheral nerve regeneration experimental research: part II—morphological techniques. Int Rev Neurobiol. 2009;87:81–103.

    Article  PubMed  Google Scholar 

  29. Lewin L, David U, Elbert C, Neil V, David T. Simultaneous treatment with BDNF and CNTF after peripheral nerve transection and repair enhances rate of functional recovery compared with BDNF treatment alone. Laryngoscope. 1997;107:992–9.

    Article  CAS  PubMed  Google Scholar 

  30. Huseyinoglu N, Ozaydin I, Yayla S, Yildirim C, Aksoy O, Sengoz A, Tasdemiroglu E. Electrophysiological assessment of the effects of silicone tubes and hyaluronic acid on nerve regeneration in rats with sciatic neurorrhaphy. Kafkas Univ Vet Fak Derg. 2012;18:917–22.

    Google Scholar 

  31. Wolthers M, Moldovan M, Binderup T, Schmalbruch H, Krarup C. Comparative electrophysiological, functional, and histological studies of nerve lesions in rats. Microsurgery. 2005;25:508–19.

    Article  CAS  PubMed  Google Scholar 

  32. Siesjo B, Zhao Q, Pahlmark K, Siesjo P, Katsura K, Folbergrova J. Glutamate, calcium, and free radicals as mediators of ischemic brain damage. Ann Thorac Surg. 1995;59:1316–20.

    Article  CAS  PubMed  Google Scholar 

  33. Abe N, Cavalli V. Nerve injury signaling. Curr Opin Neurobiol. 2008;18:276–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mishra B, Carson R, Hume R, Collins C. Sodium and potassium currents influence Wallerian degeneration of injured Drosophila axons. J Neurosci. 2013;33:18728–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hama A, Sagen J. Antinociceptive effect of Riluzole in rats with neuropathic spinal cord injury pain. J Neurotrauma. 2011;28:127–34.

    Article  PubMed  Google Scholar 

  36. Shortland P, Leinster V, White W, Robson L. Riluzole promotes cell survival and neurite outgrowth in rat sensory neurones in vitro. Eur J Neurosci. 2006;24:3343–53.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Ann Paterson for assisting with English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Behnam-Rassouli.

Ethics declarations

Conflict of interest

Mohammad-Bagher Ghayour, Arash Abdolmaleki, and Morteza Behnam-Rassouli declare that they have no conflicts of interest.

Research involving human and animal rights

All animal experiments were carried out in accordance with the European Communities Council directive of 24 November 1986 (86/609/EEC) and in accordance with the local FUM committee for Human and Animal ethics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghayour, M.B., Abdolmaleki, A. & Behnam-Rassouli, M. The effect of Riluzole on functional recovery of locomotion in the rat sciatic nerve crush model. Eur J Trauma Emerg Surg 43, 691–699 (2017). https://doi.org/10.1007/s00068-016-0691-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-016-0691-4

Keywords

Navigation