Skip to main content

Advertisement

Log in

Impact of haemorrhagic shock intensity on the dynamic of alarmins release in porcine poly-trauma animal model

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Purpose

Traumatic insults result in an altered inflammatory response, in which alarmins release has a central role. The impact of haemorrhagic shock intensity on the long-term kinetics of alarmins is not yet fully elucidated. We investigated these aspects in a combined trauma (chest, abdominal, and extremities injury) porcine model with different severities and durations of haemorrhagic shock.

Methods

After induction of combined trauma (tibia fracture, lung contusion, and liver laceration), haemorrhagic shock was induced at different intensities: moderate haemorrhage (MH; n = 15): mean arterial pressure (MAP) <30 ± 5 mmHg [maximum loss of total blood volume (TBVmax): 45 %] for 90 min, and severe haemorrhage (SH; n = 10): MAP <25 ± 5 mmHg (TBVmax 50 %) for 120 min. Resuscitation was performed using a standardized crystalloid infusion protocol. Animals were mechanically ventilated and underwent ICU-monitoring for 48 h (MH) and 48.5 h (SH). Blood samples were collected over the clinical time course, and systemic levels of serum alarmins [High-Mobility Group Protein B-1 (HMGB-1) and Heat Shock Protein 70 (HSP70)] were measured using an ELISA kit.

Results

Heart rate, systemic blood pressure, lactate, and base excess were significantly altered as a function of haemorrhagic shock in both trauma groups (MH and SH). Systemic HMGB-1 levels were significantly elevated in both trauma groups when compared to the sham group. Haemorrhagic shock severity and duration were positively correlated with HMGB-1 levels and compared to baseline values, concentrations remained significantly increased in SH when compared to MH. On the other hand, we observed a significant decrease in the systemic HSP70 levels of trauma groups (MH, and SH) when compared to the sham group, which was significantly decreased compared to baseline values in SH over the entire time course.

Conclusion

Our data show that haemorrhagic shock duration and severity affect the systemic levels of HMGB-1 and HSP70. This early alarmins release after trauma can be used to guide the treatment strategies (e.g. surgical procedures) of polytrauma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lefering R, Paffrath T, Nienaber U. TraumaRegister DGU Jahresbericht 2014. In: Köln; 2013. http://www.traumaregister.de/images/stories/downloads/jahresberichte/TR-DGU-Jahresbericht_2013.pdf.

  2. Nance ML. National Trauma Data Bank—annual report. In: NTDB annual report 2013. 2013. https://www.facs.org/~/media/files/quality%20programs/trauma/ntdb/ntdb%20annual%20report%202013.ashx.

  3. Volpin G, Cohen M, Assaf M, Meir T, Katz R, Pollack S. Cytokine levels (IL-4, IL-6, IL-8 and TGFβ) as potential biomarkers of systemic inflammatory response in trauma patients. Int Orthop. 2014;38(6):1303–9. doi:10.1007/s00264-013-2261-2.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Majetschak M, Borgermann J, Waydhas C, Obertacke U, Nast-Kolb D, Schade FU. Whole blood tumor necrosis factor-alpha production and its relation to systemic concentrations of interleukin 4, interleukin 10, and transforming growth factor-beta1 in multiply injured blunt trauma victims. Crit Care Med. 2000;28(6):1847–53.

    Article  CAS  PubMed  Google Scholar 

  5. Pittet JF, Lee H, Morabito D, Howard MB, Welch WJ, Mackersie RC. Serum levels of Hsp 72 measured early after trauma correlate with survival. J Trauma. 2002, 52(4):611–617 (discussion 617).

  6. Roumen RM, Hendriks T, van der Ven-Jongekrijg J, Nieuwenhuijzen GA, Sauerwein RW, van der Meer JW, Goris RJ. Cytokine patterns in patients after major vascular surgery, hemorrhagic shock, and severe blunt trauma. Relation with subsequent adult respiratory distress syndrome and multiple organ failure. Ann Surg. 1993;218(6):769–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Maier B, Lefering R, Lehnert M, Laurer HL, Steudel WI, Neugebauer EA, Marzi I. Early versus late onset of multiple organ failure is associated with differing patterns of plasma cytokine biomarker expression and outcome after severe trauma. Shock. 2007;28(6):668–74.

    CAS  PubMed  Google Scholar 

  8. Martin C, Boisson C, Haccoun M, Thomachot L, Mege JL. Patterns of cytokine evolution (tumor necrosis factor-alpha and interleukin-6) after septic shock, hemorrhagic shock, and severe trauma. Crit Care Med. 1997;25(11):1813–9.

    Article  CAS  PubMed  Google Scholar 

  9. Strecker W, Gebhard F, Perl M, Rager J, Buttenschon K, Kinzl L, Beck A. Biochemical characterization of individual injury pattern and injury severity. Injury. 2003;34(12):879–87.

    Article  PubMed  Google Scholar 

  10. Schinkel C, Wick M, Muhr G, Koller M. Analysis of systemic interleukin-11 after major trauma. Shock. 2005;23(1):30–4.

    Article  CAS  PubMed  Google Scholar 

  11. Janeway C. Immunogenicity signals 1, 2, 3,… and 0. Immunol Today. 1989;10(9):283–6.

    Article  CAS  PubMed  Google Scholar 

  12. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  13. Stoecklein VM, Osuka A, Lederer JA. Trauma equals danger–damage control by the immune system. J Leukoc Biol. 2012;92(3):539–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hirsiger S, Simmen HP, Werner CM, Wanner GA, Rittirsch D. Danger signals activating the immune response after trauma. Mediators Inflamm. 2012;2012:315941.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Maslanik T, Mahaffey L, Tannura K, Beninson L, Greenwood BN, Fleshner M. The inflammasome and danger associated molecular patterns (DAMPs) are implicated in cytokine and chemokine responses following stressor exposure. Brain Behav Immun. 2013;28:54–62.

    Article  CAS  PubMed  Google Scholar 

  16. Lenz A, Franklin GA, Cheadle WG. Systemic inflammation after trauma. Injury. 2007;38(12):1336–45.

    Article  PubMed  Google Scholar 

  17. Flohe SB, Flohe S, Schade FU. Invited review: deterioration of the immune system after trauma: signals and cellular mechanisms. Innate Immun. 2008;14(6):333–44.

    Article  CAS  PubMed  Google Scholar 

  18. Mizushima Y, Wang P, Jarrar D, Cioffi WG, Bland KI, Chaudry IH. Preinduction of heat shock proteins protects cardiac and hepatic functions following trauma and hemorrhage. Am J Physiol Regul Integr Comp Physiol. 2000;278(2):R352–9.

    CAS  PubMed  Google Scholar 

  19. Zhang HY, Lu NH, Xie Y, Guo GH, Zhan JH, Chen J. Influence of heat shock preconditioning on structure and function of mitochondria in gastric mucosa of severely burned animals: experiment with rats. Zhonghua Yi Xue Za Zhi. 2008;88(8):564–7.

    CAS  PubMed  Google Scholar 

  20. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy L, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA. 2013;110(9):3507–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Gentile LF, Nacionales DC, Lopez MC, Vanzant E, Cuenca A, Cuenca AG, Ungaro R, Baslanti TO, McKinley BA, Bihorac A, et al. A better understanding of why murine models of trauma do not recapitulate the human syndrome. Crit Care Med. 2014;42(6):1406–13. doi:10.1097/CCM.0000000000000222.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Fang WH, Yao YM, Shi ZG, Yu Y, Wu Y, Lu LR, Sheng ZY. The significance of changes in high mobility group-1 protein mRNA expression in rats after thermal injury. Shock. 2002;17(4):329–33.

    Article  PubMed  Google Scholar 

  23. Luo DL, Zhou JH, Liu BH, Huang XK, Chen JP, Qiu J, Xiong RP, Wang ZG. Study on the relationship of heat shock protein 70 with secondary liver damage in early stage after severe multiple injury. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2003;15(4):204–6.

    CAS  PubMed  Google Scholar 

  24. Levy RM, Mollen KP, Prince JM, Kaczorowski DJ, Vallabhaneni R, Liu S, Tracey KJ, Lotze MT, Hackam DJ, Fink MP, et al. Systemic inflammation and remote organ injury following trauma require HMGB1. Am J Physiol Regul Integr Comp Physiol. 2007;293(4):R1538–44.

    Article  CAS  PubMed  Google Scholar 

  25. Gentile LF, Cuenca AG, Vanzant EL, Efron PA, McKinley B, Moore F, Moldawer LL. Is there value in plasma cytokine measurements in patients with severe trauma and sepsis? Methods. 2013;61(1):3–9.

  26. Mair KH, Sedlak C, Kaser T, Pasternak A, Levast B, Gerner W, Saalmuller A, Summerfield A, Gerdts V, Wilson HL, et al. The porcine innate immune system: an update. Dev Comp Immunol. 2014;45(2):321–43.

    Article  CAS  PubMed  Google Scholar 

  27. Hildebrand F, Andruszkow H, Huber-Lang M, Pape HC, van Griensven M. Combined hemorrhage/trauma models in pigs—current state and future perspectives. Shock. 2013;40(4):247–73. doi:10.1097/SHK.0b013e3182a3cd74.

    Article  PubMed  Google Scholar 

  28. Hildebrand F, Weuster M, Mommsen P, Mohr J, Frohlich M, Witte I, Keibl C, Ruchholtz S, Seekamp A, Pape HC, et al. A combined trauma model of chest and abdominal trauma with hemorrhagic shock–description of a new porcine model. Shock. 2012;38(6):664–70.

    Article  PubMed  Google Scholar 

  29. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342(18):1301–8.

  30. Kauvar DS, Lefering R, Wade CE. Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. J Trauma. 2006;60(6 Suppl):S3–11.

    Article  PubMed  Google Scholar 

  31. Fei J, Yu HJ, Zhou J, Huang XK, Liang HP, Jiang YG. Study on high mobility group-1 protein in patients with multiple trauma. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2005;17(5):273–5.

    CAS  PubMed  Google Scholar 

  32. Cohen MJ, Brohi K, Calfee CS, Rahn P, Chesebro BB, Christiaans SC, Carles M, Howard M, Pittet JF. Early release of high mobility group box nuclear protein 1 after severe trauma in humans: role of injury severity and tissue hypoperfusion. Crit Care. 2009;13(6):R174.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Kim JY, Park JS, Strassheim D, Douglas I, Diaz del Valle F, Asehnoune K, Mitra S, Kwak SH, Yamada S, Maruyama I, et al. HMGB1 contributes to the development of acute lung injury after hemorrhage. Am J Physiol Lung Cell Mol Physiol. 2005;288(5):L958–65.

    Article  CAS  PubMed  Google Scholar 

  34. Giannoudis PV, Mallina R, Harwood P, Perry S, Sante ED, Pape HC. Pattern of release and relationship between HMGB-1 and IL-6 following blunt trauma. Injury. 2010;41(12):1323–7.

    Article  PubMed  Google Scholar 

  35. Tsukamoto T, Pape HC. Animal models for trauma research: what are the options?. Shock. 2009;31(1):3–10.

  36. Wang H, Yang H, Czura CJ, Sama AE, Tracey KJ. HMGB1 as a late mediator of lethal systemic inflammation. Am J Respir Crit Care Med. 2001;164(10 Pt 1):1768–73.

    Article  CAS  PubMed  Google Scholar 

  37. Rouhiainen A, Tumova S, Valmu L, Kalkkinen N, Rauvala H. Pivotal advance: analysis of proinflammatory activity of highly purified eukaryotic recombinant HMGB1 (amphoterin). J Leukoc Biol. 2007;81(1):49–58.

    Article  CAS  PubMed  Google Scholar 

  38. Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C, et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol. 2007;8(5):487–96.

    Article  CAS  PubMed  Google Scholar 

  39. Cai B, Dong W, Sharpe S, Deitch EA, Ulloa L. Survival and inflammatory responses in experimental models of hemorrhage. J Surg Res. 2011;169(2):257–66.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Xiang M, Yin L, Li Y, Xiao G, Vodovotz Y, Billiar TR, Wilson MA, Fan J. Hemorrhagic shock activates lung endothelial reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase via neutrophil NADPH oxidase. Am J Respir Cell Mol Biol. 2011;44(3):333–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Li Y, Xiang M, Yuan Y, Xiao G, Zhang J, Jiang Y, Vodovotz Y, Billiar TR, Wilson MA, Fan J. Hemorrhagic shock augments lung endothelial cell activation: role of temporal alterations of TLR4 and TLR2. Am J Physiol Regul Integr Comp Physiol. 2009;297(6):R1670–80. doi:10.1152/ajpregu.00445.2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Wong YC, Lai YY, Tan MH, Tan CS, Wu J, Zeng LZ, Lu J, Moochhala S. Potential biomarker panel for predicting organ dysfunction and acute coagulopathy in a polytrauma porcine model. Shock. 2015;43(2):157–65. doi:10.1097/SHK.0000000000000279.

    Article  CAS  PubMed  Google Scholar 

  43. Ombrellino M, Wang H, Ajemian MS, Talhouk A, Scher LA, Friedman SG, Tracey KJ. Increased serum concentrations of high-mobility-group protein 1 in haemorrhagic shock. Lancet. 1999;354(9188):1446–7.

    Article  CAS  PubMed  Google Scholar 

  44. Peltz ED, Moore EE, Eckels PC, Damle SS, Tsuruta Y, Johnson JL, Sauaia A, Silliman CC, Banerjee A, Abraham E. HMGB1 is markedly elevated within 6 hours of mechanical trauma in humans. Shock. 2009;32(1):17–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A. HMGB1: endogenous danger signaling. Mol Med. 2008;14(7–8):476–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Fan J, Li Y, Levy RM, Fan JJ, Hackam DJ, Vodovotz Y, Yang H, Tracey KJ, Billiar TR, Wilson MA. Hemorrhagic shock induces NAD(P)H oxidase activation in neutrophils: role of HMGB1-TLR4 signaling. J Immunol. 2007;178(10):6573–80.

    Article  CAS  PubMed  Google Scholar 

  47. De Maio A. Heat shock proteins: facts, thoughts, and dreams. Shock. 1999;11(1):1–12.

    Article  PubMed  Google Scholar 

  48. Kamphuis S, Kuis W, de Jager W, Teklenburg G, Massa M, Gordon G, Boerhof M, Rijkers GT, Uiterwaal CS, Otten HG, et al. Tolerogenic immune responses to novel T-cell epitopes from heat-shock protein 60 in juvenile idiopathic arthritis. Lancet. 2005;366(9479):50–6.

    Article  CAS  PubMed  Google Scholar 

  49. Jayakumar J, Suzuki K, Sammut IA, Smolenski RT, Khan M, Latif N, Abunasra H, Murtuza B, Amrani M, Yacoub MH. Heat shock protein 70 gene transfection protects mitochondrial and ventricular function against ischemia-reperfusion injury. Circulation. 2001;104(12 Suppl 1):I303–7.

    CAS  PubMed  Google Scholar 

  50. Kirchhoff C, Biberthaler P, Mutschler WE, Faist E, Jochum M, Zedler S. Early down-regulation of the pro-inflammatory potential of monocytes is correlated to organ dysfunction in patients after severe multiple injury: a cohort study. Crit Care. 2009;13(3):R88.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Stojadinovic A, Kiang J, Smallridge R, Galloway R, Shea-Donohue T. Induction of heat-shock protein 72 protects against ischemia/reperfusion in rat small intestine. Gastroenterology. 1995;109(2):505–15.

    Article  CAS  PubMed  Google Scholar 

  52. Conde AG, Lau SS, Dillmann WH, Mestril R. Induction of heat shock proteins by tyrosine kinase inhibitors in rat cardiomyocytes and myogenic cells confers protection against simulated ischemia. J Mol Cell Cardiol. 1997;29(7):1927–38.

    Article  CAS  PubMed  Google Scholar 

  53. Pittet JF, Lu LN, Geiser T, Lee H, Matthay MA, Welch WJ. Stress preconditioning attenuates oxidative injury to the alveolar epithelium of the lung following haemorrhage in rats. J Physiol. 2002;538(Pt 2):583–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Ziegler TR, Ogden LG, Singleton KD, Luo M, Fernandez-Estivariz C, Griffith DP, Galloway JR, Wischmeyer PE. Parenteral glutamine increases serum heat shock protein 70 in critically ill patients. Intensive Care Med. 2005;31(8):1079–86.

    Article  PubMed  Google Scholar 

  55. Tang D, Kang R, Xiao W, Wang H, Calderwood SK, Xiao X. The anti-inflammatory effects of heat shock protein 72 involve inhibition of high-mobility-group box 1 release and proinflammatory function in macrophages. J Immunol. 2007;179(2):1236–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Kiang JG. Inducible heat shock protein 70 kD and inducible nitric oxide synthase in hemorrhage/resuscitation-induced injury. Cell Res. 2004;14(6):450–9.

    Article  CAS  PubMed  Google Scholar 

  57. Gelain DP, de Bittencourt Pasquali MA, M Comim C, Grunwald MS, Ritter C, Tomasi CD, Alves SC, Quevedo J, Dal-Pizzol F, Moreira JC. Serum heat shock protein 70 levels, oxidant status, and mortality in sepsis. Shock. 2011;35(5):466–70.

    Article  CAS  PubMed  Google Scholar 

  58. Hu D, Qu Y, Chen FQ, Luo B. Expression of heat shock protein 72 in leukocytes from patients with acute trauma and its relationship with survival. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2005;17(5):299–301.

    CAS  PubMed  Google Scholar 

  59. Durand P, Bachelet M, Brunet F, Richard MJ, Dhainaut JF, Dall’Ava J, Polla BS. Inducibility of the 70 kD heat shock protein in peripheral blood monocytes is decreased in human acute respiratory distress syndrome and recovers over time. Am J Respir Crit Care Med. 2000;161(1):286–92.

    Article  CAS  PubMed  Google Scholar 

  60. Kiang JG, Bowman PD, Wu BW, Hampton N, Kiang AG, Zhao B, Juang YT, Atkins JL, Tsokos GC. Geldanamycin treatment inhibits hemorrhage-induced increases in KLF6 and iNOS expression in unresuscitated mouse organs: role of inducible HSP70. J Appl Physiol (1985). 2004;97(2):564–569.

  61. Chen Z, Chen H, Rhee P, Koustova E, Ayuste EC, Honma K, Nadel A, Alam HB. Induction of profound hypothermia modulates the immune/inflammatory response in a swine model of lethal hemorrhage. Resuscitation. 2005;66(2):209–16.

    Article  PubMed  Google Scholar 

  62. Baker TA, Romero J, Bach HH 4th, Strom JA, Gamelli RL, Majetschak M. Systemic release of cytokines and heat shock proteins in porcine models of polytrauma and hemorrhage*. Crit Care Med. 2012;40(3):876–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Dong Y, Wang Y, Yu H, Liu Y, Yang N, Zuo P. Involvement of heat shock protein 70 in the DNA protective effect from estrogen. Am J Alzheimers Dis Other Demen. 2013;28(3):269–77.

    Article  PubMed  Google Scholar 

  64. Saleh MC, Connell BJ, Saleh TM. Estrogen may contribute to ischemic tolerance through modulation of cellular stress-related proteins. Neurosci Res. 2009;63(4):273–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Jan Goloup, Nick Lippitz, Christin Büttner, and Johanna Miller for their support in conducting the experiments. We also thank Katharina Eisoldt, Andreas Gockel, and Petra Ewers for their substantial commitment during the entire investigation. The article was proofread by Proof-Reading-Service.com, Devonshire Business Centre, Works Road, Letchworth Garden City, SG6 1GJ, United Kingdom.

Conflict of interest

The authors K. Horst, F. Hildebrand, R. Pfeifer, S. Hübenthal, K. Almahmoud, M. Sassen, T. Steinfeldt, H. Wulf, S. Ruchholtz, H.C. Pape and D. Eschbach declare that they have no conflict of interest.

Compliance with Ethical Requirements

This study was approved by the Regional Ethics Committee and the Animal Welfare Authority. The experiments were performed in accordance with internationally accepted ethical standards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Horst.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horst, K., Hildebrand, F., Pfeifer, R. et al. Impact of haemorrhagic shock intensity on the dynamic of alarmins release in porcine poly-trauma animal model. Eur J Trauma Emerg Surg 42, 67–75 (2016). https://doi.org/10.1007/s00068-015-0504-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-015-0504-1

Keywords

Navigation