Skip to main content

Advertisement

Log in

Whole body imaging in the diagnosis of blunt trauma, ionizing radiation hazards and residual risk

  • Review Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Ever since the introduction of radiographic imaging, its utility in identifying injuries has been well documented and was incorporated in the workup of injured patients during advanced trauma life support algorithms [American College of Surgeons, 8th ed. Chicago, 2008]. More recently, computerized tomography (CT) has been shown to be more sensitive than radiography in the diagnosis of injury. Due to the increased use of CT scanning, concerns were raised regarding the associated exposure to ionizing radiation [N Engl J Med 357:2277–2284, 2007]. During the last several years, a significant amount of research has been published on this topic, most of it being incorporated in the BEIR VII Phase 2 report, published by the National Research Council of the National Academies [National Academy of Sciences, Washington DC, 2006]. The current review will analyze the scientific basis for the concerns over the ionizing radiation associated with the use of CT scanning and will examine the accuracy of the typical advanced trauma life support work-up for diagnosis of injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Korley FK, Pham JC, Kirsch TD. Use of advanced radiology during visits to US emergency departments for injury-related conditions, 1998–2007. JAMA. 2010;304:1465–71.

    Article  PubMed  CAS  Google Scholar 

  2. Brenner DJ, Hall EJ. Computed tomography—an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.

    Article  PubMed  CAS  Google Scholar 

  3. National Academy of Sciences. Health risks from exposure to low levels of ionizing radiation: BEIR VII-Phase 2. Washington DC: National Academies Press; 2006.

  4. Zankl M, Eckerman KF, Bolch WE. Voxel-based models representing the male and female ICRP reference adult—the skeleton. Radiat Prot Dosimetry. 2007;127:174–86.

    Article  PubMed  CAS  Google Scholar 

  5. Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB, Lubin JH, Preston DL, Preston RJ, Puskin JS, Ron E, Sachs RK, Samet JM, Setlow RB, Zaider M. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci USA. 2003;100:13761–6.

    Article  PubMed  CAS  Google Scholar 

  6. National Academcy of Sciences. Health effects of radiation: findings of the radiation effects research foundation. Washington DC: National Academies Press; 2006.

  7. Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248:254–63.

    Article  PubMed  Google Scholar 

  8. Parry RA, Glaze SA, Archer BR. The AAPM/RSNA physics tutorial for residents. Typical patient radiation doses in diagnostic radiology. Radiographics. 1999;19:1289–302.

    PubMed  CAS  Google Scholar 

  9. Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, Mabuchi K, Kodama K. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res. 2007;168:1–64.

    Article  PubMed  CAS  Google Scholar 

  10. Jacob P, Meckbach R, Sokolnikov M, Khokhryakov VV, Vasilenko E. Lung cancer risk of Mayak workers: modelling of carcinogenesis and bystander effect. Radiat Environ Biophys. 2007;46:383–94.

    Article  PubMed  CAS  Google Scholar 

  11. Krestinina LY, Davis F, Ostroumova E, Epifanova S, Degteva M, Preston D, Akleyev A. Solid cancer incidence and low-dose-rate radiation exposures in the Techa River cohort: 1956–2002. Int J Epidemiol. 2007;36:1038–46.

    Article  PubMed  Google Scholar 

  12. Storer JB, Mitchell TJ, Fry RJ. Extrapolation of the relative risk of radiogenic neoplasms across mouse strains and to man. Radiat Res. 1988;114:331–53.

    Article  PubMed  CAS  Google Scholar 

  13. Carnes BA, Grahn D, Thomson JF. Dose-response modeling of life shortening in a retrospective analysis of the combined data from the JANUS program at Argonne National Laboratory. Radiat Res. 1989;119:39–56.

    Article  PubMed  CAS  Google Scholar 

  14. Covelli V, Di Majo V, Coppola M, Rebessi S. The dose-response relationships for myeloid leukemia and malignant lymphoma in BC3F1 mice. Radiat Res. 1989;119:553–61.

    Article  PubMed  CAS  Google Scholar 

  15. U.S. Government Accountability Office (USGAO). Radiation standards: scientific basis inconclusive and EPA and NRA disagreement continues. In: Office USGA. editor. Washington DC: USGAO; 2000.

  16. Leonard BE. Common sense about the linear no-threshold controversy-give the general public a break. Radiat Res. 2008;169:245–6. [author reply 246–247].

    Article  PubMed  CAS  Google Scholar 

  17. Breckow J. Linear-no-threshold is a radiation-protection standard rather than a mechanistic effect model. Radiat Environ Biophys. 2006;44:257–60.

    Article  PubMed  Google Scholar 

  18. Tubiana M, Aurengo A, Averbeck D, Masse R. The debate on the use of linear no threshold for assessing the effects of low doses. J Radiol Prot. 2006;26:317–24.

    Article  PubMed  CAS  Google Scholar 

  19. Tubiana M, Feinendegen LE, Yang C, Kaminski JM. The linear no-threshold relationship is inconsistent with radiation biologic and experimental data. Radiology. 2009;251:13–22.

    Article  PubMed  Google Scholar 

  20. Brenner DJ, Elliston CD. Estimated radiation risks potentially associated with full-body CT screening. Radiology. 2004;232:735–8.

    Article  PubMed  Google Scholar 

  21. Laack TA, Thompson KM, Kofler JM, Bellolio MF, Sawyer MD, Laack NN. Comparison of trauma mortality and estimated cancer mortality from computed tomography during initial evaluation of intermediate-risk trauma patients. J Trauma. 2011;70:1362–5.

    Article  PubMed  Google Scholar 

  22. Moores BM, Regulla D. A review of the scientific basis for radiation protection of the patient. Radiat Prot Dosimetry. 2011;147:22–9.

    Article  PubMed  CAS  Google Scholar 

  23. Azzam EI, de Toledo SM, Raaphorst GP, Mitchel RE. Low-dose ionizing radiation decreases the frequency of neoplastic transformation to a level below the spontaneous rate in C3H 10T1/2 cells. Radiat Res. 1996;146:369–73.

    Article  PubMed  CAS  Google Scholar 

  24. Nambi KS, Soman SD. Environmental radiation and cancer in India. Health Phys. 1987;52:653–7.

    Article  PubMed  CAS  Google Scholar 

  25. Wei LX, Zha YR, Tao ZF, He WH, Chen DQ, Yuan YL. Epidemiological investigation of radiological effects in high background radiation areas of Yangjiang. China. J Radiat Res (Tokyo). 1990;31:119–36.

    Article  CAS  Google Scholar 

  26. Frigerio NA, Stowe RS. Carcinogenic and genetic hazard from background radiation; biological and environmental effects of low-level radiation. Vol II. Vienna: IAEA; 1976.

  27. Abbat JD, Hamilton TR, Weeks JL. Epidemiological studiesin three corporations covering the Canadian nuclear fuel cycle; biological effects of low level radiation. Vienna: IAEA; 1983. pp 351.

  28. Kendal GM, Muirhead CR, Macgibbon BH, Oagan JA. First analysis of the national registry for radiation workers: occupational exposure to ionizing radiation and mortality. NRPB, RPB-R251. Chilton, Didcot, UK: NRPB; 1992.

  29. Sponsler S, Cameron JR. Nuclear shipyard worker study (1980–1988): a large cohort exposed to low-dose-rate gamma radiation. Int J Low Radiat. 2005;1:463–78.

    Article  Google Scholar 

  30. Luckey TD. Radiation hormesis: the good, the bad, and the ugly. Dose Response. 2006;4:169–90.

    Article  PubMed  CAS  Google Scholar 

  31. Salim A, Sangthong B, Martin M, Brown C, Plurad D, Demetriades D. Whole body imaging in blunt multisystem trauma patients without obvious signs of injury: results of a prospective study. Arch Surg. 2006;141:468–73. (discussion 473–475).

    Article  PubMed  Google Scholar 

  32. Compoginis JM, Akopian G. CT imaging in motorcycle collision victims: routine or selective? Am Surg. 2009;75:892–6.

    PubMed  Google Scholar 

  33. Duane TM, Mayglothling J, Wilson SP, Wolfe LG, Aboutanos MB, Whelan JF, Malhotra AK, Ivatury RR. National Emergency X-Radiography Utilization Study criteria is inadequate to rule out fracture after significant blunt trauma compared with computed tomography. J Trauma. 2011;70:829–31.

    Article  PubMed  Google Scholar 

  34. Parmley LF, Mattingly TW, Manion WC, Jahnke EJ Jr. Nonpenetrating traumatic injury of the aorta. Circulation. 1958;17:1086–101.

    Article  PubMed  CAS  Google Scholar 

  35. Ferrera PC, Verdile VP, Bartfield JM, Snyder HS, Salluzzo RF. Injuries distracting from intraabdominal injuries after blunt trauma. Am J Emerg Med. 1998;16:145–9.

    Article  PubMed  CAS  Google Scholar 

  36. Deunk J, Brink M, Dekker HM, Kool DR, van Kuijk C, Blickman JG, van Vugt AB, Edwards MJ. Routine versus selective computed tomography of the abdomen, pelvis, and lumbar spine in blunt trauma: a prospective evaluation. J Trauma. 2009;66:1108–17.

    Article  PubMed  Google Scholar 

  37. Halley MK, Silva PD, Foley J, Rodarte A. Loss of consciousness: when to perform computed tomography? Pediatr Crit Care Med. 2004;5:230–3.

    Article  PubMed  Google Scholar 

  38. Bivins BA, Zona JZ, Belin RP. Diagnostic peritoneal lavage in pediatric trauma. J Trauma. 1976;16:739–42.

    Article  PubMed  CAS  Google Scholar 

  39. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150:971–9.

    Article  PubMed  CAS  Google Scholar 

  40. American College of Surgeons. ATLS: advanced trauma life support for doctors (student course manual). 8th ed. Chicago: American College of Surgeons; 2008.

  41. Diaz JJ Jr, Gillman C, Morris JA Jr, May AK, Carrillo YM, Guy J. Are five-view plain films of the cervical spine unreliable? A prospective evaluation in blunt trauma patients with altered mental status. J Trauma. 2003;55:658–63. (discussion 663–664).

    Article  PubMed  Google Scholar 

  42. Duane TM, Dechert T, Brown H, Wolfe LG, Malhotra AK, Aboutanos MB, Ivatury RR. Is the lateral cervical spine plain film obsolete? J Surg Res. 2008;147:267–9.

    Article  PubMed  Google Scholar 

  43. Demetriades D, Gomez H, Velmahos GC, Asensio JA, Murray J, Cornwell EE 3rd, Alo K, Berne TV. Routine helical computed tomographic evaluation of the mediastinum in high-risk blunt trauma patients. Arch Surg. 1998;133:1084–8.

    Article  PubMed  CAS  Google Scholar 

  44. Exadaktylos AK, Sclabas G, Schmid SW, Schaller B, Zimmermann H. Do we really need routine computed tomographic scanning in the primary evaluation of blunt chest trauma in patients with “normal” chest radiograph? J Trauma. 2001;51:1173–6.

    Article  PubMed  CAS  Google Scholar 

  45. Guillamondegui OD, Pryor JP, Gracias VH, Gupta R, Reilly PM, Schwab CW. Pelvic radiography in blunt trauma resuscitation: a diminishing role. J Trauma. 2002;53:1043–7.

    Article  PubMed  Google Scholar 

  46. Asimos AW, Gibbs MA, Marx JA, Jacobs DG, Erwin RJ, Norton HJ, Thomason M. Value of point-of-care blood testing in emergent trauma management. J Trauma. 2000;48:1101–8.

    Article  PubMed  CAS  Google Scholar 

  47. Madsen T, Dawson M, Bledsoe J, Bossart P. Serial hematocrit testing does not identify major injuries in trauma patients in an observation unit. Am J Emerg Med. 2010;28:472–6.

    Article  PubMed  Google Scholar 

  48. Opreanu RC, Arrangoiz R, Stevens P, Morrison CA, Mosher BD, Kepros JP. Hematocrit, systolic blood pressure and heart rate are not accurate predictors for surgery to control hemorrhage in injured patients. Am Surg. 2010;76:296–301.

    PubMed  Google Scholar 

  49. Natarajan B, Gupta PK, Cemaj S, Sorensen M, Hatzoudis GI, Forse RA. FAST scan: is it worth doing in hemodynamically stable blunt trauma patients? Surgery. 2010;148:695–700. (discussion 700–701).

    Article  PubMed  Google Scholar 

  50. Becker A, Lin G, McKenney MG, Marttos A, Schulman CI. Is the FAST exam reliable in severely injured patients? Injury. 2010;41:479–83.

    Article  PubMed  Google Scholar 

  51. Looby S, Flanders A. Spine trauma. Radiol Clin North Am. 2011;49:129–63.

    Article  PubMed  Google Scholar 

  52. Nichols JS, Elger C, Hemminger L, Prall JA, Shaver K, Brennan R, Whitaker JB. Magnetic resonance imaging: utilization in the management of central nervous system trauma. J Trauma. 1997;42:520–3. (discussion 523–24).

    Article  PubMed  CAS  Google Scholar 

  53. Stephan PJ, McCarley MC, O’Keefe GE, Minei JP. 23-Hour observation solely for identification of missed injuries after trauma: is it justified? J Trauma. 2002;53:895–900.

    Article  PubMed  Google Scholar 

  54. Giannakopoulos GF, Saltzherr TP, Beenen LF, Reitsma JB, Bloemers FW, Goslings JC, Bakker FC. Missed injuries during the initial assessment in a cohort of 1124 level-1 trauma patients. Injury; 2011. [Epub ahead of print].

  55. Biffl WL, Harrington DT, Cioffi WG. Implementation of a tertiary trauma survey decreases missed injuries. J Trauma. 2003;54:38–43. (discussion 43–44).

    Article  PubMed  Google Scholar 

  56. Poletti PA, Mirvis SE, Shanmuganathan K, Takada T, Killeen KL, Perlmutter D, Hahn J, Mermillod B. Blunt abdominal trauma patients: can organ injury be excluded without performing computed tomography? J Trauma. 2004;57:1072–81.

    Article  PubMed  Google Scholar 

  57. Teixeira PG, Inaba K, Salim A, Rhee P, Brown C, Browder T, DuBose J, Nomoto S, Demetriades D. Preventable morbidity at a mature trauma center. Arch Surg. 2009;144:536–41. (discussion 541–542).

    Article  PubMed  Google Scholar 

  58. Steinwall D, Befrits F, Naidoo SR, Hardcastle T, Eriksson A, Muckart DJ. Deaths at a level 1 trauma unit: a clinical finding and post-mortem correlation study. Injury. 2012;43(1):91–5.

    Google Scholar 

  59. Sung CK, Kim KH. Missed injuries in abdominal trauma. J Trauma. 1996;41:276–82.

    Article  PubMed  CAS  Google Scholar 

  60. Pfeifer R, Pape HC. Missed injuries in trauma patients: a literature review. Patient Saf Surg. 2008;2:20.

    Article  PubMed  Google Scholar 

  61. Robertson R, Mattox R, Collins T, Parks-Miller C, Eidt J, Cone J. Missed injuries in a rural area trauma center. Am J Surg. 1996;172:564–7. (discussion 567–8).

    Article  PubMed  CAS  Google Scholar 

  62. Buduhan G, McRitchie DI. Missed injuries in patients with multiple trauma. J Trauma. 2000;49:600–5.

    Article  PubMed  CAS  Google Scholar 

  63. Amalberti R, Auroy Y, Berwick D, Barach P. Five system barriers to achieving ultrasafe health care. Ann Intern Med. 2005;142:756–64.

    PubMed  Google Scholar 

  64. Rieger M, Czermak B, El Attal R, Sumann G, Jaschke W, Freund M. Initial clinical experience with a 64-MDCT whole-body scanner in an emergency department: better time management and diagnostic quality? J Trauma. 2009;66:648–57.

    Article  PubMed  Google Scholar 

  65. Wurmb TE, Fruhwald P, Hopfner W, Keil T, Kredel M, Brederlau J, Roewer N, Kuhnigk H. Whole-body multislice computed tomography as the first line diagnostic tool in patients with multiple injuries: the focus on time. J Trauma. 2009;66:658–65.

    Article  PubMed  Google Scholar 

  66. Philipp MO, Kubin K, Hormann M, Metz VM. Radiological emergency room management with emphasis on multidetector-row CT. Eur J Radiol. 2003;48:2–4.

    Article  PubMed  CAS  Google Scholar 

  67. Lawson CM, Daley BJ, Ormsby CB, Enderson B. Missed injuries in the era of the trauma scan. J Trauma. 2011;70:452–6. (discussion 456–8).

    Article  PubMed  Google Scholar 

  68. Huber-Wagner S, Lefering R, Qvick LM, Korner M, Kay MV, Pfeifer KJ, Reiser M, Mutschler W, Kanz KG. Effect of whole-body CT during trauma resuscitation on survival: a retrospective, multicentre study. Lancet. 2009;373:1455–61.

    Article  PubMed  Google Scholar 

  69. Deunk J, Brink M, Dekker HM, Kool DR, Blickman JG, van Vugt AB, Edwards MJ. Routine versus selective multidetector-row computed tomography (MDCT) in blunt trauma patients: level of agreement on the influence of additional findings on management. J Trauma. 2009;67:1080–6.

    Article  PubMed  Google Scholar 

  70. Linsenmaier U, Krotz M, Hauser H, Rock C, Rieger J, Bohndorf K, Pfeifer KJ, Reiser M. Whole-body computed tomography in polytrauma: techniques and management. Eur Radiol. 2002;12:1728–40.

    Article  PubMed  Google Scholar 

  71. Agostini C, Durieux M, Milot L, Kamaoui I, Floccard B, Allaouchiche B, Pilleul F. Value of double reading of whole body CT in polytrauma patients. J Radiol. 2008;89:325–30.

    Article  PubMed  CAS  Google Scholar 

  72. Eurin M, Haddad N, Zappa M, Lenoir T, Dauzac C, Vilgrain V, Mantz J, Paugam-Burtz C. Incidence and predictors of missed injuries in trauma patients in the initial hot report of whole-body CT scan. Injury. 2012;43(1):73–7.

    Google Scholar 

  73. Fabian TC. Whole-body CT in multiple trauma. Lancet. 2009;373:1408–9.

    Article  PubMed  Google Scholar 

  74. Stein SC, Burnett MG, Glick HA. Indications for CT scanning in mild traumatic brain injury: a cost-effectiveness study. J Trauma. 2006;61:558–66.

    Article  PubMed  Google Scholar 

  75. Blackmore CC, Mann FA, Wilson AJ. Helical CT in the primary trauma evaluation of the cervical spine: an evidence-based approach. Skeletal Radiol. 2000;29:632–9.

    Article  PubMed  CAS  Google Scholar 

  76. Grogan EL, Morris JA Jr, Dittus RS, Moore DE, Poulose BK, Diaz JJ, Speroff T. Cervical spine evaluation in urban trauma centers: lowering institutional costs and complications through helical CT scan. J Am Coll Surg. 2005;200:160–5.

    Article  PubMed  Google Scholar 

  77. Ratnapalan S, Bona N, Chandra K, Koren G. Physicians’ perceptions of teratogenic risk associated with radiography and CT during early pregnancy. AJR Am J Roentgenol. 2004;182:1107–9.

    PubMed  Google Scholar 

  78. Lavine MA. Cultural history of radiation and radioactivity in the United States, 1895–1945. Madison: University of Wisconsin-Madison; 2008.

  79. Favus MJ, Schneider AB, Stachura ME, Arnold JE, Ryo UY, Pinsky SM, Colman M, Arnold MJ, Frohman LA. Thyroid cancer occurring as a late consequence of head-and-neck irradiation. Evaluation of, 1056 patients. N Engl J Med. 1976;294:1019–25.

    Article  PubMed  CAS  Google Scholar 

  80. Adams MJ, Shore RE, Dozier A, Lipshultz SE, Schwartz RG, Constine LS, Pearson TA, Stovall M, Thevenet-Morrison K, Fisher SG. Thyroid cancer risk 40+ years after irradiation for an enlarged thymus: an update of the Hempelmann cohort. Radiat Res. 2010;174:753–62.

    Article  PubMed  CAS  Google Scholar 

  81. Lavine M. The early clinical X-ray in the United States: patient experiences and public perceptions. J Hist Med Allied Sci; 2011. doi:10.1093/jhmas/jrr047.

  82. Bisconti AS. Communicating with stakeholders about nuclear power plant radiation. Health Phys. 2011;100:97–102.

    Article  PubMed  CAS  Google Scholar 

  83. Schull WJ. The children of atomic bomb survivors: a synopsis. J Radiol Prot. 2003;23:369–84.

    Article  PubMed  Google Scholar 

  84. Jablon S, Hrubec Z, Boice JD Jr. Cancer in populations living near nuclear facilities. A survey of mortality nationwide and incidence in two states. JAMA. 1991;265:1403–8.

    Article  PubMed  CAS  Google Scholar 

  85. Aydin D, Feychting M, Schuz J, Tynes T, Andersen TV, Schmidt LS, Poulsen AH, Johansen C, Prochazka M, Lannering B, Klaeboe L, Eggen T, Jenni D, Grotzer M, Von der Weid N, Kuehni CE, Roosli M. Mobile phone use and brain tumors in children and adolescents: a multicenter case-control study. J Natl Cancer Inst. 2011;103:1264–76.

    Article  PubMed  Google Scholar 

  86. Huss A, Spoerri A, Egger M, Roosli M. Residence near power lines and mortality from neurodegenerative diseases: longitudinal study of the Swiss population. Am J Epidemiol. 2009;169:167–75.

    Article  PubMed  Google Scholar 

  87. Jenkins-Smith HC, Silva CL, Murray C. Beliefs about radiation: scientists, the public and public policy. Health Phys. 2009;97:519–27.

    Article  PubMed  CAS  Google Scholar 

  88. Mihai LT, Milu C, Voicu B, Enachescu D. Ionizing radiation—understanding and acceptance. Health Phys. 2005;89:375–82.

    Article  PubMed  CAS  Google Scholar 

  89. Mandelblatt JS, Cronin KA, Berry DA, Chang Y, de Koning HJ, Lee SJ, Plevritis SK, Schechter CB, Stout NK, van Ravesteyn NT, Zelen M, Feuer EJ. Modeling the impact of population screening on breast cancer mortality in the United States. Breast. 2011;20[Suppl 3]:S75–81.

    Article  PubMed  Google Scholar 

  90. Linton OW, Mettler FA Jr. National conference on dose reduction in CT, with an emphasis on pediatric patients. AJR Am J Roentgenol. 2003;181:321–9.

    PubMed  Google Scholar 

  91. Huda W, He W. Estimating cancer risks to adults undergoing body CT examinations. Radiat Prot Dosimetry. 2012;150:168–79.

    Article  PubMed  Google Scholar 

  92. McCollough CH. CT dose: how to measure, how to reduce. Health Phys. 2008;95:508–17.

    Article  PubMed  CAS  Google Scholar 

  93. Jaffe TA, Yoshizumi TT, Toncheva G, Anderson-Evans C, Lowry C, Miller CM, Nelson RC, Ravin CE. Radiation dose for body CT protocols: variability of scanners at one institution. AJR Am J Roentgenol. 2009;193:1141–7.

    Article  PubMed  Google Scholar 

  94. Smith-Bindman R, Lipson J, Marcus R, Kim KP, Mahesh M, Gould R, Berrington de Gonzalez A, Miglioretti DL. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169:2078–86.

    Article  PubMed  Google Scholar 

  95. Mayo JR, Whittall KP, Leung AN, Hartman TE, Park CS, Primack SL, Chambers GK, Limkeman MK, Toth TL, Fox SH. Simulated dose reduction in conventional chest CT: validation study. Radiology. 1997;202:453–7.

    PubMed  CAS  Google Scholar 

  96. Mulkens TH, Marchal P, Daineffe S, Salgado R, Bellinck P, te Rijdt B, Kegelaers B, Termote JL. Comparison of low-dose with standard-dose multidetector CT in cervical spine trauma. AJNR Am J Neuroradiol. 2007;28:1444–50.

    Article  PubMed  CAS  Google Scholar 

  97. Cook SH, Fielding JR, Phillips JD. Repeat abdominal computed tomography scans after pediatric blunt abdominal trauma: missed injuries, extra costs, and unnecessary radiation exposure. J Pediatr Surg. 2010;45:2019–24.

    Article  PubMed  Google Scholar 

  98. Hashem R, Evans CC, Farrokhyar F, Kahnamoui K. Plain radiography does not add any clinically significant advantage to multidetector row computed tomography in diagnosing cervical spine injuries in blunt trauma patients. J Trauma. 2009;66:423–8.

    Article  PubMed  Google Scholar 

  99. Ptak T, Rhea JT, Novelline RA. Radiation dose is reduced with a single-pass whole-body multi-detector row CT trauma protocol compared with a conventional segmented method: initial experience. Radiology. 2003;229:902–5.

    Article  PubMed  Google Scholar 

  100. Fanucci E, Fiaschetti V, Rotili A, Floris R, Simonetti G. Whole body 16-row multislice CT in emergency room: effects of different protocols on scanning time, image quality and radiation exposure. Emerg Radiol. 2007;13:251–7.

    Article  PubMed  Google Scholar 

  101. Langner S, Fleck S, Kirsch M, Petrik M, Hosten N. Whole-body CT trauma imaging with adapted and optimized CT angiography of the craniocervical vessels: do we need an extra screening examination? AJNR Am J Neuroradiol. 2008;29:1902–7.

    Article  PubMed  CAS  Google Scholar 

  102. de Gonzalez AB, Brenner A, Hartge P, Lee C, Morton L, Rajaraman P. Evolving strategies in epidemiologic research on radiation and cancer. Radiat Res. 2011;176:527–32.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Kepros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kepros, J.P., Opreanu, R.C., Samaraweera, R. et al. Whole body imaging in the diagnosis of blunt trauma, ionizing radiation hazards and residual risk. Eur J Trauma Emerg Surg 39, 15–24 (2013). https://doi.org/10.1007/s00068-012-0201-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-012-0201-2

Keywords

Navigation