Skip to main content

Advertisement

Log in

Optimization by visualization of indices

Optimierung durch Visualisierung von Indizes

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and purpose

Physical 3D treatment planning provides a pool of parameters describing dose distributions. It is often useful to define conformal indices to enable quicker evaluation. However, the application of individual indices is controversial and not always effective. The aim of this study was to design a quick check of dose distributions based on several indices detecting underdosages within planning target volumes (PTVs) and overdosages in normal tissue.

Materials and methods

Dose distributions of 215 cancer patients were considered. Treatment modalities used were three-dimensional conformal radiotherapy (3DCRT), radiosurgery, intensity-modulated radiotherapy (IMRT), intensity-modulated arc therapy (IMAT) and tomotherapy. The volumes recommended in ICRU 50 and 83 were used for planning and six conformation and homogeneity indices were selected: CI, CN, CICRU, COV, C, and HI. These were based on the PTV, the partial volume covered by the prescribed isodose (PI; PTVPI), the treated volume (TVPI), near maximum D2 and near minimum D98. Results were presented as a hexagon—the corners of which represent the values of the indices—and a modified test function F (Rosenbrock’s function) was calculated. Results refer to clinical examples and mean values, in order to allow evaluation of the power of F and hexagon-based decision support procedures in detail and in general.

Results

IMAT and tomotherapy showed the best values for the indices and the lowest standard deviation followed by static IMRT. DCRT and radiosurgery (e.g. CN: IMAT 0.85 ± 0.06; tomotherapy 0.84 ± 0.06; IMRT 0.83 ± 0.07; 3DCRT 0.65 ± 0.08; radiosurgery 0.64 ± 0.11). In extreme situations, not all indices reflected the situation correctly. Over- and underdosing of PTV and normal tissue could be qualitatively assessed from the distortion of the hexagon in graphic analysis. Tomotherapy, IMRT, IMAT, 3DCRT and radiosurgery showed increasingly distorted hexagons, the type of distortion indicating exposure of normal tissue volumes. The calculated F values correlated with these observations.

Conclusion

An evaluation of dose distributions cannot be based on a single conformal index. A solution could be the use of several indices presented as a hexagonal graphic and/or as a test function.

Zusammenfassung

Hintergrund

Die physikalische 3-D-Bestrahlungsplanung liefert eine Fülle an Parametern zur Beschreibung der Dosisverteilung. Um zu einer schnellen Evaluation zu kommen, kann es sinnvoll sein, Konformationsindizes zu verwenden. Allerdings ist deren Anwendung umstritten und nicht immer effektiv. Es ist das Ziel dieser Studie, einen Quick-Check zu entwickeln, um Unterdosierungen im Zielvolumen (PTVs) und Überdosierungen im Normalgewebe zu detektieren.

Material und Methode

Von 215 Patienten wurden die Dosisverteilungen betrachtet. Therapiemodalitäten waren die 3-dimensionale konformale Strahlentherapie (3D-CRT), Radiochirurgie, die intensitätsmodulierte Strahlentherapie (IMRT), die intensitätsmodulierte Arc-Therapie (IMAT) und die Tomotherapie. Für die Planung wurden die in ICRU 50 und 83 vorgeschlagenen Volumen verwendet und entsprechend einer Literaturanalyse 6 Konformations- und Homogenitätsindizes ausgewählt (CI, CN, CICRU, COV, C, and HI), deren Definitionen auf dem PTV, dem Behandlungsvolumen (TVPI), dem Partialvolumen (PI, PTVPI), dem Maximum D2 und dem Minimum D98 basieren. Die Ergebnisse werden in Form eines Hexagons präsentiert, deren Ecken die Werte der Indizes repräsentieren, zusätzlich werden die Werte einer modifizierten Test-Funktion F (Rosenbrock-Funktion) berechnet. Im Rahmen dieser Arbeit werden klinische Beispiele und Mittelwerte betrachtet, um die Möglichkeiten der hier vorgestellten Evaluation im Detail und allgemein betrachten zu können.

Ergebnisse

IMAT und Tomotherapie zeigen die besten Mittelwerte gefolgt von der IMRT. 3DCRT und Radiochirurgie (Z. B. CN: IMAT 0,85 ± 0,06; Tomotherapie 0,84 ± 0,06; IMRT 0,83 ± 0,07; 3DCRT 0,65 ± 0,08; Radiochirurgie 0,64 ± 0,11). Zu beachten ist, dass nicht alle Indizes in Extremsituation zielführende Werte annehmen. Die graphische Analyse erfolgte über ein Hexagon; Über- und Unterdosierungen konnten qualitativ aus der Verzerrung ermittelt werden. Die Tomotherapie, IMRT, IMAT, 3D-CRT und Radiochirurgie zeigten zunehmend verzerrte Hexagone. Die Art der Verzerrung lässt auf eine Exposition des Normalgewebes schließen. Die ermittelten F-Werte korrelieren mit diesen Beobachtungen.

Schlussfolgerung

Die Evaluierung einer Dosisverteilung kann nicht mit einem Index erfolgen. Die Lösung kann eine graphische Analyse mehrerer Indizes sein und/oder die Bestimmung von Werten einer Testfunktion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akpati H, Kim C, Kim B, Park T, Meek A (2008) Unified dosimetry index (UDI). A figure of merit for ranking treatment plans. J Appl Clin Med Physics 9:2803

  2. Berger J (1972) Ways of seeing. Penguin Books, London

  3. Das IJ, Cheng CW, Healey GA (1995) Optimum field size and choice of isodose lines in electron beam treatment. Int J Rad Oncol Biol Phys 31:157–163

    Article  CAS  Google Scholar 

  4. Fadda G, Massazza G, Zucca S, Durzu S, Meleddu G, Possanzini M, Farance P (2013) Quasi-VMAT in high-grade glioma radiation therapy. Strahlenth Onkol 189:367–371

  5. Feuvret L, Noel G, Mazeron JJ, Bey P (2006) Conformity index. A review. Int J Radiat Oncol Biol Phys 64:333–342

    Article  PubMed  Google Scholar 

  6. Fröhlich G, Agoston P, Lövey J, Somogyi A, Fodor J, Polgar C, Major T (2010) Dosimetric evaluation of high-dose-rate interstitial brachytherapy boost treatments for localized prostate cancer. Strahlenth Onkol 186:388–395

    Article  Google Scholar 

  7. Gellekom vanMPR, Moerland MA, Battermann JJ, Langendijk JJW (2004) MRI-guided prostate brachytherapy with single needle method—a planning study. Radiat Oncol 71:327–332

  8. Gevaert T, Levivier M, Lacornerie T, Verellen D, Engels B, Reynaert N, Tournel K, Duchateau M, Reynders T, Depuydt T, Collen C, Lartigau E, De Ridder M (2013) Dosimetric comparison of different treatment modalities for stereotactic radiosurgery of arteriovenous malformations and acoustic neuromas. Radiother Onkol 106:192–197

    Article  Google Scholar 

  9. Gong GZ, Yin Y, Xing LG, Guo YJ, Liu T, Chen J, Lu J, Ma C, Sun T, Bai T, Zhang GG, Wang R (2012) RapidArc combined with the active breathing coordinator provides an effective and accurate approach for the radiotherapy of hepatocellular carcinoma. Strahlenther Onkol 188:262–268

    Article  CAS  PubMed  Google Scholar 

  10. Gutierrez A, Westerly D, Tome W, Jaradat H, Mackie T, Bentzen S, Khuntia D, Metha M (2007) Whole brain radiotherapy with hippocampal avoidance and simultaneously integrated brain metastases boost: a planning study. Int J Radiat Oncol Biol Phys 69:589–597

    Article  PubMed Central  PubMed  Google Scholar 

  11. ICRU, Report 50 (1993) Prescribing, recording and reporting photon beam therapy. Bethesda: International Commission on Radiation Units and Measurements

  12. ICRU, Report 62 (1999) Prescribing, recording and reporting photon beam therapy(Supplement to ICRU Report 50). Bethesda: International Commission on Radiation Units and Measurements

  13. ICRU, Report 83 (2010) Prescribing, recording, and reporting Intensity–Modulated Photon-Beam. Bethesda: International Commission on Radiation Units and Measurements

  14. Jacob V, Bayer W, Astner ST, Busch R, Kneschaurek P (2010) A planning comparison of dynamic IMRT for different collimator leaf thicknesses with helical tomotherapy and RapidArc for prostate and head and neck tumors. Strahlenther Onkol 186:502–510

    Article  PubMed  Google Scholar 

  15. Kim S, Yoon N, Ho Shin D, Kim D, Lee S, Lee SB, Park SY, Song SH (2011) Feasibility of deformation-independent tumour-tracking radiotherapy during respiration. J Med Phys 36:78–84

    Article  PubMed Central  PubMed  Google Scholar 

  16. Lomax NJ, Scheib SG (2003) Quantifying the degree of conformity in radiosurgery treatment planning. Int J Radiat Oncol Biol Phys 55:1409–1419

    Article  PubMed  Google Scholar 

  17. Major T, Polgar C, Fodor J, Somogyi A, Nemeth G (2002) Conformality and homogeneity of dose distributions in interstitial implants at idealized target volumes: a comparison between the Paris and dose point optimized systems. Radioth Oncol 62:103–111

    Article  Google Scholar 

  18. Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, Bentzen SM, Nam J, Deasy JO (2010) Use of normal tissue complication probability modelsm in the clinic. Int J Radiat Oncol Biol Phys 76:10–19

  19. Meertens H, Borger J, Stettgerda M, Blom A (1994) Evaluation and optimisation of interstitial brachytherapy dose distribution. In: Mould RF et al (eds) Brachytherapy from radium to optimisation.Veenendal. Nucletron International, The Netherlands, pp. 300–307

  20. Mounessi FS, Lehrich P, Haverkamp U, Willich N, Bölling T, Eich HT (2013) Pelvic Ewing sarcomas. Three-dimensional conformal vs. intensity-modulated radiotherapy. Strahlenth Onkol 189:308–314

    Article  CAS  Google Scholar 

  21. Murthy V, Jalali R, Sarin R, Nehru RM, Deshpande D, Dinshaw KA (2003) Stereotactic conformal radiotherapy for posterior fossa tumours: a modelling study for potential improvement in therapeutic ratio. Radiat Oncol 67:191–198

    Article  Google Scholar 

  22. Nakamura JL, Verhey LJ, Smith V (2001) Dose conformity of gamma knife radiosurgery and risk factors for complications. Int J Radiat Oncol Biol Phys 51:1313–1319

    Article  CAS  PubMed  Google Scholar 

  23. Ott OJ, Hildebrandt G, Pötter R, Hammer J, Lotter M, Resch A, Sauer R, Strnad V (2007) Accelerated partial breast irradiation with multi-catheter brachytherapy: local control, side effects and cosmetic outcome for 274 patients. Results of the German–Austrian multi-centre trial. Radioth Oncol 82:281–286

    Article  Google Scholar 

  24. Paddick I (2000) A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J Neurosurg 93:219–222

  25. Pasciuti K, Iaccarino G, Soriani A, Bruzzaniti V, Mazi S, Gomellini S, Arcangeli S, Benassi M, Bandoni V (2008) DVHs evaluation in brain metastases stereotactic radiotherapy treatment plans. Radiat Oncol 87:110–115

    Article  Google Scholar 

  26. Piotrowski T (2005) Examination of the two component conformity index formula in IMRT and 3DCRT of the prostate cancer. Radiat Oncol 76:23–24

    Article  Google Scholar 

  27. Rosenbrock HH (1960) An automatic method for finding the greatest or least value of a function. Comput J 3:175–184

    Article  Google Scholar 

  28. Stieler F, Wolff D, Bauer L, Wertz HJ, Wenz F, Lohr F (2011) Reirradiation of spinal column metastases: comparison of several treatment techniques and dosimetric validation for the use of VMAT. Strahlenth Onkol 187:406–415

  29. Van’t Riet A, Mak AC, Moerland MA, Elders LH, van derZW (1997) A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: application to the prostate. Int J Radiat Oncol Biol Phys 37:731–736

    Article  PubMed  Google Scholar 

  30. Wojcicka JB, Lacher DE, McAfee SS, Fortier GA (2009) Dosimetric comparison of three different treatment techniques in extensive scalp lesion irradiation. Radiat Oncol 91:255–260

    Article  Google Scholar 

  31. Wu VWC, Kwong DLW, Sham JST (2004) Target dose conformity in 3-dimensional conformal radiotherapy and intensity modulated radiotherapy. RadiatOncol 71:201–206

    CAS  Google Scholar 

  32. Wulf J, Hädinger U, Oppitz U, Thiele W, Flentje M (2003) Impact of target reproducibility on tumour dose in stereotactic radiotherapy of targets in the lung and liver. Radiat Oncol 66:141–150

    Article  Google Scholar 

  33. Zheng XK, Ma J, Chen LH, Xia YF, Shi YS (2005) Dosimetric and clinical results of three-dimensional conformal radiotherapy for locally recurrent nasopharyngeal carcinomas. Radiat Oncol 75:197–203

    Article  Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest

U. Haverkamp, D. Norkus, J. Kriz, M. Müller Minai, F.-J. Prott, and H.T. Eich state that there are no conflicts of interest. The accompanying manuscript does not include studies on humans or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Haverkamp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haverkamp, U., Norkus, D., Kriz, J. et al. Optimization by visualization of indices. Strahlenther Onkol 190, 1053–1059 (2014). https://doi.org/10.1007/s00066-014-0688-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-014-0688-z

Keywords

Schlüsselwörter

Navigation