Skip to main content

Advertisement

Log in

Benefit of replacing the Sigma-60 by the Sigma-Eye applicator

A Monte Carlo-based uncertainty analysis

Vorteil des Ersatzes des Sigma-60- durch den Sigma-Eye-Applikator

Eine Monte-Carlo-basierte Unsicherheitsanalyse

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and purpose

To investigate the clinical benefit of replacing the BSD-2000 Sigma-60 with the Sigma-Eye applicator, taking into account effects of uncertainties in tissue and water bolus parameters.

Patients and methods

For 20 patients, specific absorption rate (SAR) and temperature distributions were calculated and optimized, based on computed tomography (CT) scans in treatment position. The impact of uncertainties on predicted distributions was studied using a Monte Carlo uncertainty assessment.

Results

Replacing the Sigma-60 by the Sigma-Eye applicator resulted in a higher SAR in the tumor [on average a decrease of the hotspot tumor quotient (HTQ) by 24%; p < 0.001], and higher temperatures (T90: +0.4°C, p < 0.001; T50: +0.6°C, p < 0.001) using literature values and SAR optimization. When temperature optimization (T90) was used, a larger average increase was found (T90: +0.7°C, p < 0.001; T50: +0.8°C, p < 0.001). When taking into account uncertainties, a decrease of 23% in median HTQ (p < 0.001) and an increase in T50 and T90 of 0.4°C (p < 0.001) could be demonstrated.

Conclusion

Based on this uncertainty analysis, significant and clinically relevant improvements in HTQ and tumor temperature were achieved when replacing the Sigma-60 by the Sigma-Eye applicator.

Zusammenfassung

Ziel

Untersuchung des Ersatzes des Sigma-60-Applikators des BSD-2000-Hyperthermiesystems durch den Sigma-Eye-Applikator, unter Berücksichtigung der Auswirkungen der Unsicherheiten in den Gewebeparametern.

Methode

Modelle von 20 Patienten wurden aus den CT-Scans in Behandlungsposition erstellt und für die Berechnung und Optimierung von spezifischen Absorptionsraten(SAR)- und Temperaturverteilungen verwendet. Die klinische Relevanz von Unsicherheiten wurde mithilfe der Monte-Carlo-Methode ausgiebig untersucht.

Ergebnisse

Der Ersatz des Sigma-60 durch den Sigma-Eye führt zu erhöhten SAR-Werten im Tumor [durchschnittliche Verbesserung der HTQ um 24% (p < 0,001)] und zu erhöhten Temperaturen (T90: +0,4°C, p < 0,001; T50: +0,6°C, p < 0,001). Durch Verwendung der Temperaturoptimierung (T90) wird eine größere Zunahme festgestellt (T90: + 0,7°C, p < 0,001; T50: + 0,8°C, p < 0,001). Wenn die Unsicherheiten berücksichtigt werden, ergibt sich eine Verbesserung der mittleren HTQ um 23% (p < 0,001) und eine Erhöhung der mittleren T50 und T90 um 0,4°C (p < 0,001).

Schlussfolgerung

Auf Basis einer Unsicherheitsanalyse ergibt sich eine signifikante und klinisch relevante Verbesserung der Tumor-SAR und der Tumortemperatur, wenn der Sigma-60- durch den Sigma-Eye-Applikator ersetzt wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bakker JF, Paulides MM, Neufeld E et al (2011) Children and adults exposed to electromagnetic fields at the ICNIRP reference levels: theoretical assessment of the induced peak temperature increase. Phys Med Biol 56:4967–4989

    Article  PubMed  CAS  Google Scholar 

  2. Bruggmoser G, Bauchowitz S, Canters R et al (2011) Quality assurance for clinical studies in regional deep hyperthermia. Strahlenther Onkol 187:605–610

    Article  PubMed  Google Scholar 

  3. Canters RA, Franckena M, Paulides MM et al (2009) Patient positioning in deep hyperthermia: influences of inaccuracies, signal correction possibilities and optimization potential. Phys Med Biol 54:3923–3936

    Article  PubMed  CAS  Google Scholar 

  4. Canters RA, Franckena M, Zee J van der et al (2008) Complaint-adaptive power density optimization as a tool for HTP-guided steering in deep hyperthermia treatment of pelvic tumors. Phys Med Biol 53:6799–6820

    Article  PubMed  CAS  Google Scholar 

  5. Canters RA, Franckena M, Zee J van der et al (2011) Optimizing deep hyperthermia treatments: are locations of patient pain complaints correlated with modelled SAR peak locations? Phys Med Biol 56:439–451

    Article  PubMed  CAS  Google Scholar 

  6. Canters RAM, Wust P, Bakker JF et al (2009) A literature survey on indicators for characterization and optimization of SAR distributions in deep hyperthermia, a plea for standardization. Int J Hyperthermia

  7. Cox RS, Kapp DS (1992) Correlation of thermal parameters with outcome in combined radiation therapy-hyperthermia trials. Int J Hyperthermia 8:719–732

    Article  PubMed  CAS  Google Scholar 

  8. Das SK, Clegg ST, Samulski TV (1999) Computational techniques for fast hyperthermia temperature optimization. Med Phys 26:319–328

    Article  PubMed  CAS  Google Scholar 

  9. Das SK, Clegg ST, Samulski TV (1999) Electromagnetic thermal therapy power optimization for multiple source applicators. Int J Hyperthermia 15:291–308

    Article  PubMed  CAS  Google Scholar 

  10. de Bruijne M, Holt B van der, Rhoon GC van et al (2010) Evaluation of CEM43 degrees CT90 thermal dose in superficial hyperthermia: a retrospective analysis. Strahlenther Onkol 186:436–443

    Article  Google Scholar 

  11. De Greef M, Kok HP, Bel A et al (2011) 3D versus 2D steering in patient anatomies: a comparison using hyperthermia treatment planning. Int J Hyperthermia 27:74–85

    Article  Google Scholar 

  12. de Greef M, Kok HP, Correia D et al (2010) Optimization in hyperthermia treatment planning: the impact of tissue perfusion uncertainty. Med Phys 37:4540–4550

    Article  Google Scholar 

  13. de Greef M, Kok HP, Correia D et al (2011) Uncertainty in hyperthermia treatment planning: the need for robust system design. Phys Med Biol 56:3233–3250

    Article  Google Scholar 

  14. Franckena M, Canters R, Termorshuizen F et al (2010) Clinical implementation of hyperthermia treatment planning guided steering: A cross over trial to assess its current contribution to treatment quality. Int J Hyperthermia 26:145–157

    Article  PubMed  Google Scholar 

  15. Franckena M, Fatehi D, Bruijne M de et al (2009) Hyperthermia dose-effect relationship in 420 patients with cervical cancer treated with combined radiotherapy and hyperthermia. Eur J Cancer 45:1969–1978

    Article  PubMed  Google Scholar 

  16. Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269

    Article  PubMed  CAS  Google Scholar 

  17. Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293

    Article  PubMed  CAS  Google Scholar 

  18. Gellermann J, Goke J, Figiel R et al (2007) Simulation of different applicator positions for treatment of a presacral tumour. Int J Hyperthermia 23:37–47

    Article  PubMed  Google Scholar 

  19. Gellermann J, Hildebrandt B, Issels R et al (2006) Noninvasive magnetic resonance thermography of soft tissue sarcomas during regional hyperthermia: correlation with response and direct thermometry. Cancer 107:1373–1382

    Article  PubMed  Google Scholar 

  20. Gellermann J, Wust P, Stalling D et al (2000) Clinical evaluation and verification of the hyperthermia treatment planning system hyperplan. Int J Radiat Oncol Biol Phys 47:1145–1156

    Article  PubMed  CAS  Google Scholar 

  21. Hasgall PA, Neufeld E, Gosselin MC et al (2011) IT’IS Database for thermal and electromagnetic parameters of biological tissues

  22. Kohler T, Maass P, Wust P et al (2001) A fast algorithm to find optimal controls of multiantenna applicators in regional hyperthermia. Phys Med Biol 46:2503–2514

    Article  PubMed  CAS  Google Scholar 

  23. Kok HP, Greef M de, Borsboom PP et al (2011) Improved power steering with double and triple ring waveguide systems: the impact of the operating frequency. Int J Hyperthermia 27:224–239

    Article  PubMed  CAS  Google Scholar 

  24. Linthorst M, Drizdal T, Joosten H et al (2011) Procedure for creating a three-dimensional (3D) model for superficial hyperthermia treatment planning. Strahlenther Onkol 187:835–841

    Article  PubMed  Google Scholar 

  25. Maguire PD, Samulski TV, Prosnitz LR et al (2001) A phase II trial testing the thermal dose parameter CEM43 degrees T90 as a predictor of response in soft tissue sarcomas treated with pre-operative thermoradiotherapy. Int J Hyperthermia 17:283–290

    Article  PubMed  CAS  Google Scholar 

  26. McIntosh RL, Anderson V (2010) Comprehensive tissue properties database provided for the thermal assessment of a human at rest. Biophys Rev Lett 5:129–151

    Article  Google Scholar 

  27. Paulides MM, Bakker JF, Linthorst M et al (2010) The clinical feasibility of deep hyperthermia treatment in the head and neck: new challenges for positioning and temperature measurement. Phys Med Biol 55:2465–2480

    Article  PubMed  CAS  Google Scholar 

  28. Paulides MM, Bakker JF, Neufeld E et al (2007) Winner of the “New Investigator Award” at the European Society of Hyperthermia Oncology Meeting 2007. The HYPERcollar: a novel applicator for hyperthermia in the head and neck. Int J Hyperthermia 23:567–576

    Article  PubMed  CAS  Google Scholar 

  29. Sauer R, Creeze H, Hulshof M et al (2012) Concerning the final report “Hyperthermia: a systematic review” of the Ludwig Boltzmann Institute for Health Technology Assessment, Vienna, March 2010. Strahlenther Onkol 188:209–213

    Article  PubMed  CAS  Google Scholar 

  30. Seebass M, Beck R, Gellermann J et al (2001) Electromagnetic phased arrays for regional hyperthermia: optimal frequency and antenna arrangement. Int J Hyperthermia 17:321–336

    Article  PubMed  CAS  Google Scholar 

  31. Sherar M, Liu FF, Pintilie M et al (1997) Relationship between thermal dose and outcome in thermoradiotherapy treatments for superficial recurrences of breast cancer: data from a phase III trial. Int J Radiat Oncol Biol Phys 39:371–380

    Article  PubMed  CAS  Google Scholar 

  32. Song CW, Lokshina A, Rhee JG et al (1984) Implication of blood flow in hyperthermic treatment of tumors. IEEE Trans Biomed Eng 31:9–16

    Article  PubMed  CAS  Google Scholar 

  33. Sreenivasa G, Gellermann J, Rau B et al (2003) Clinical use of the hyperthermia treatment planning system HyperPlan to predict effectiveness and toxicity. Int J Radiat Oncol Biol Phys 55:407–419

    Article  PubMed  Google Scholar 

  34. Thrall DE, LaRue SM, Yu D et al (2005) Thermal dose is related to duration of local control in canine sarcomas treated with thermoradiotherapy. Clin Cancer Res 11:5206–5214

    Article  PubMed  Google Scholar 

  35. Trefna HD, Togni P, Shiee R et al (2012) Design of a wideband multi-channel system for time reversal hyperthermia. Int J Hyperthermia 28:175–183

    Article  PubMed  Google Scholar 

  36. Van de Kamer JB, Van Wieringen N, De Leeuw AA et al (2001) The significance of accurate dielectric tissue data for hyperthermia treatment planning. Int J Hyperthermia 17:123–142

    Article  Google Scholar 

  37. van der Zee J, Gonzalez Gonzalez D, van Rhoon GC et al (2000) Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet 355:1119–1125

    Article  Google Scholar 

  38. van der Zee J, Rhoon GC van, Wike-Hooley JL et al (1985) Clinically derived dose effect relationship for hyperthermia given in combination with low dose radiotherapy. Br J Radiol 58:243–250

    Article  Google Scholar 

  39. Wust P, Stahl H, Dieckmann K et al (1996) Local hyperthermia of N2/N3 cervical lymph node metastases: correlationof technical/thermal parameters and response. Int J Radiat Oncol Biol Phys 34:635–646

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.A.M. Canters MSc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canters, R., Paulides, M., Franckena, M. et al. Benefit of replacing the Sigma-60 by the Sigma-Eye applicator. Strahlenther Onkol 189, 74–80 (2013). https://doi.org/10.1007/s00066-012-0241-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0241-x

Keywords

Schlüsselwörter

Navigation