Skip to main content
Log in

Adsorbertherapie bei Sepsis

Adsorption therapy in sepsis

  • Übersichten
  • Published:
Medizinische Klinik - Intensivmedizin und Notfallmedizin Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Diverse pro- und antiinflammatorische Mediatorkaskaden spielen in der Pathophysiologie der Sepsis eine Schlüsselrolle und führen zur Schädigung multipler Organsysteme. Bislang stehen aber nur sehr begrenzt Therapien zur Verfügung, die diese überschießenden Reaktionen des Immunsystems sinnvoll modulieren können.

Lösungsansatz

Eine Adsorption solcher Mediatoren mithilfe einer extrakorporalen Therapie könnte daher eine Bereicherung des therapeutischen Rüstzeugs bei schwerer Sepsis bedeuten. Technische Innovationen der letzten Jahre machen eine solche Therapie auch in der klinischen Praxis durchführbar. Dies kann als Nebeneffekt einer konventionellen Nierenersatztherapie oder als eigenständige extrakorporale Therapie erfolgen. Neben der relativ unspezifischen Adsorption eines breiten Spektrums an Mediatoren stehen sowohl Verfahren zur relativ selektiven Endotoxinadsorption als auch zur spezifischen Immunadsorption zur Verfügung.

Diskussion

Zwar konnten verschiedene Systeme ihre biochemische Wirksamkeit zeigen, jedoch ist für den breiten Einsatz adsorptiver Therapiestrategien derzeit sicherlich die ungenügende Studienlage bezüglich harter klinischer Endpunkte, wie z. B. einer Senkung der hohen Mortalitätsrate bei Sepsis, limitierend. Damit kann ein Einsatz solcher Therapien derzeit außerhalb klinischer Studien (noch) nicht empfohlen werden.

Abstract

Background

The activation of multiple pro- and anti-inflammatory mediators is a key feature in the pathophysiology of sepsis. Many of these mediators may directly contribute to organ dysfunction and determine disease severity. So far our ability to modulate these upregulated mediator pathways is very limited. Therefore the adsorption of such mediators via an extracorporeal circuit may be a beneficial intervention during sepsis.

Objectives

Recent technical innovations have made this intervention feasible. Both systems for exclusive mediator adsorption and for adsorption beside a conventional renal replacement therapy are now available. Some of the membranes can adsorb a broad range of mediators by rather unspecific binding, whereas others specifically adsorb endotoxin or mediators.

Discussion

Whilst biochemical efficacy could be demonstrated by some of the systems, controlled and randomized studies demonstrating improved clinical endpoints are still lacking. Therefore the use of such therapies outside clinical studies cannot yet be recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Engel C, Brunkhorst FM, Bone HG et al (2007) Epidemiology of sepsis in Germany: results from a national prospective multicenter study. Intensive Care Med 33(4):606–618

    Article  PubMed  Google Scholar 

  2. Angus DC, Poll T van der (2013) Severe sepsis and septic shock. N Engl J Med 369(9):840–851

    Article  CAS  PubMed  Google Scholar 

  3. De Vriese AS, Vanholder RC, Pascual M et al (1999) Can inflammatory cytokines be removed efficiently by continuous renal replacement therapies? Intensive Care Med 25(9):903–910

    Article  Google Scholar 

  4. Joannes-Boyau O, Honore PM, Perez P et al (2013) High-volume versus standard-volume haemofiltration for septic shock patients with acute kidney injury (IVOIRE study): a multicentre randomized controlled trial. Intensive Care Med 39(9):1535–1546

    Article  PubMed  Google Scholar 

  5. Morgera S, Haase M, Kuss T et al (2006) Pilot study on the effects of high cutoff hemofiltration on the need for norepinephrine in septic patients with acute renal failure. Crit Care Med 34(8):2099–2104

    Article  CAS  PubMed  Google Scholar 

  6. Honore PM, Jacobs R, Boer W et al (2012) New insights regarding rationale, therapeutic target and dose of hemofiltration and hybrid therapies in septic acute kidney injury. Blood Purif 33(1–3):44–51

  7. De Vriese AS, Colardyn FA, Philippe JJ et al (1999) Cytokine removal during continuous hemofiltration in septic patients. J Am Soc Nephrol 10(4):846–853

    Google Scholar 

  8. Rimmele T, Kaynar AM, McLaughlin JN et al (2013) Leukocyte capture and modulation of cell-mediated immunity during human sepsis: an ex vivo study. Crit Care 17(2):R59

    Article  PubMed Central  PubMed  Google Scholar 

  9. Rimmele T, Assadi A, Cattenoz M et al (2009) High-volume haemofiltration with a new haemofiltration membrane having enhanced adsorption properties in septic pigs. Nephrol Dial Transplant 24(2):421–427

    Article  CAS  PubMed  Google Scholar 

  10. Shum HP, Chan KC, Kwan MC, Yan WW (2013) Application of endotoxin and cytokine adsorption haemofilter in septic acute kidney injury due to gram-negative bacterial infection. Hong Kong Med J 19(6):491–497

    CAS  PubMed  Google Scholar 

  11. Ramsay G, Newman PM, McCartney AC, Ledingham IM (1988) Endotoxaemia in multiple organ failure due to sepsis. Prog Clin Biol Res 272:237–246

    CAS  PubMed  Google Scholar 

  12. Shoji H (2003) Extracorporeal endotoxin removal for the treatment of sepsis: endotoxin adsorption cartridge (Toraymyxin). Ther Apher Dial 7(1):108–114

    Article  CAS  PubMed  Google Scholar 

  13. Issekutz AC (1983) Removal of gram-negative endotoxin from solutions by affinity chromatography. J Immunol Methods 61(3):275–281

    Article  CAS  PubMed  Google Scholar 

  14. Aoki H, Kodama M, Tani T, Hanasawa K (1994) Treatment of sepsis by extracorporeal elimination of endotoxin using polymyxin B-immobilized fiber. Am J Surg 167(4):412–417

    Article  CAS  PubMed  Google Scholar 

  15. Cruz DN, Antonelli M, Fumagalli R et al (2009) Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial. JAMA 301(23):2445–2452

    Article  CAS  PubMed  Google Scholar 

  16. Martin EL, Cruz DN, Monti G et al (2010) Endotoxin removal: how far from the evidence? The EUPHAS 2 Project. Contrib Nephrol 167:119–125

    Article  PubMed  Google Scholar 

  17. Peng ZY, Carter MJ, Kellum JA (2008) Effects of hemoadsorption on cytokine removal and short-term survival in septic rats. Crit Care Med 36(5):1573–1577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kellum JA, Song M, Venkataraman R (2004) Hemoadsorption removes tumor necrosis factor, interleukin-6, and interleukin-10, reduces nuclear factor-κB DNA binding, and improves short-term survival in lethal endotoxemia. Crit Care Med 32(3):801–805

    Article  CAS  PubMed  Google Scholar 

  19. Schädler D, Porcelius C, Jörres A et al (2013) A multicenter randomized controlled study of an extracorporeal cytokine hemoadsorption device in septic patients. Crit Care 17(Suppl 2):P62

    Article  PubMed Central  Google Scholar 

  20. Ronco C, Brendolan A, d’Intini V et al (2003) Coupled plasma filtration adsorption: rationale, technical development and early clinical experience. Blood Purif 21(6):409–416

    Article  PubMed  Google Scholar 

  21. Ronco C, Brendolan A, Lonnemann G et al (2002) A pilot study of coupled plasma filtration with adsorption in septic shock. Crit Care Med 30(6):1250–1255

    Article  PubMed  Google Scholar 

  22. Formica M, Olivieri C, Livigni S et al (2003) Hemodynamic response to coupled plasmafiltration-adsorption in human septic shock. Intensive Care Med 29(5):703–708

    PubMed  Google Scholar 

  23. Schefold JC, Haehling S von, Corsepius M et al (2007) A novel selective extracorporeal intervention in sepsis: immunoadsorption of endotoxin, interleukin 6, and complement-activating product 5a. Shock 28(4):418–425

    Article  CAS  PubMed  Google Scholar 

  24. Honore PM, Jacobs R, Joannes-Boyau O et al (2013) Newly designed CRRT membranes for sepsis and SIRS – a pragmatic approach for bedside intensivists summarizing the more recent advances: a systematic structured review. ASAIO J 59(2):99–106

    Article  CAS  PubMed  Google Scholar 

  25. Zhou F, Peng Z, Murugan R, Kellum JA (2013) Blood purification and mortality in sepsis: a meta-analysis of randomized trials. Crit Care Med 41(9):2209–2220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. John S (2014) Nierenersatztherapie als mögliches Trauma im akuten Nierenversagen. Med Klin Intensivmed Notfmed 109(5):342–347

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. D. Hasper, J.C. Schefold und A. Jörres geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Hasper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasper, D., Schefold, J. & Jörres, A. Adsorbertherapie bei Sepsis. Med Klin Intensivmed Notfmed 110, 272–277 (2015). https://doi.org/10.1007/s00063-014-0415-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00063-014-0415-7

Schlüsselwörter

Keywords

Navigation