Skip to main content
Log in

Regional Values of Diffusional Kurtosis Estimates in the Healthy Brain during Normal Aging

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Objective

To provide estimates of the diffusional kurtosis in different anatomical regions of a healthy brain and to assess age dependency of diffusion kurtosis imaging (DKI) and diffusion tensor imaging (DTI) derived parametric values in these regions.

Materials and Methods

Eighty healthy volunteers underwent DKI of the brain with 3.0 T magnetic resonance imaging. The DKI was obtained by using three b values of 0, 1000, 2000 s/mm2, and with 50 diffusion directions. The regions of interest-based measurements were calculated to obtain several DKI estimates of 21 different locations of brain, and then, the age dependency for DKI- and DTI-derived parameters in these regions were assessed by using linear and nonlinear regressions.

Results

The mean kurtosis varied from 0.73 ± 0.01 (head of caudate nucleus) to 1.07 ± 0.08 (splenium of corpus callosum (CC)). The radial kurtosis varied from 0.84 ± 0.06 (head of caudate nucleus) to 1.05 ± 0.07 (splenium of CC), and axial kurtosis from 0.41 ± 0.02 (genu of CC) to 0.78 ± 0.02 (pallidum). DTI-derived parametric values also varied across the region. Age dependence was found for DKI-derived parameters in almost all measured regions except for corona radiata and centrum semiovale. On the contrary, DTI failed to show age dependency in many regions including gray matter structure.

Conclusion

In conclusion, the knowledge of range of diffusion kurtosis parameters in each anatomical region in different age group is important before its clinical application to diagnose the pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med. 2005;53:1432–40.

    Article  PubMed  Google Scholar 

  2. Wang JJ, Lin WY, Lu CS, Weng YH, Ng SH, Wang CH, Liu HL, Hsieh RH, Wan YL, Wai YY. Parkinson disease: diagnostic utility of diffusion kurtosis imaging. Radiology. 2011;261:210–7.

    Article  PubMed  Google Scholar 

  3. Lätt J, Nilsson M, Wirestam R, Ståhlberg F, Karlsson N, Johansson M, Sundgren PC, van Westen D. Regional values of diffusional kurtosis estimates in the healthy brain. J Magn Reson Imaging. 2013;37:610–8.

    Article  PubMed  Google Scholar 

  4. Lebel C, Beaulieu C. Longitudinal development of human brain wiring continues from childhood into adulthood. J Neurosci. 2011;31:10937–47.

    Article  CAS  PubMed  Google Scholar 

  5. Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C. Microstructural maturation of the human brain from childhood to adulthood. Neuroimage. 2008;40:1044–55.

    Article  CAS  PubMed  Google Scholar 

  6. Falangola MF, Jensen JH, Babb JS, Hu C, Castellanos FX, Di Martino A, Ferris SH, Helpern JA. Age-related non-Gaussian diffusion patterns in the prefrontal brain. J Magn Reson Imaging. 2008;28:1345–50.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dekaban AS. Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Ann Neurol. 1978;4:345–56.

    Article  CAS  Google Scholar 

  8. Benes FM, Turtle M, Khan Y, Farol P. Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry. 1994;51:477–84.

    Article  CAS  PubMed  Google Scholar 

  9. Yakovlev PI, Lecours AR. The myelogenetic cycles of regional maturation of the brain. In: Minkowski A, editor. Regional development of the brain early in life. Boston: Blackwell Science; 1967. pp. 3–70.

    Google Scholar 

  10. Huttenlocher PR. Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res. 1979;163:195–205.

    Article  CAS  PubMed  Google Scholar 

  11. Huttenlocher PR, de Courten C. The development of synapses in striate cortex of man. Hum Neurobiol. 1978;6:1–9.

    Google Scholar 

  12. Tofts PS. Quantitative MRI of the brain: measuring changes caused by disease. England: Wiley; 2003. pp. 1–621.

    Book  Google Scholar 

  13. Jernigan TL, Fennema-Notestine C. White matter mapping is needed. Neurobiol Aging. 2004;25:37–9.

    Article  CAS  PubMed  Google Scholar 

  14. Binder JR, Swanson SJ, Hammeke TA, Morris GL, Mueller WM, Fischer M, Benbadis S, Frost JA, Rao SM, Haughton VM. Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology. 1996;46:978–84.

    Article  CAS  PubMed  Google Scholar 

  15. Yang AW, Jensen JH, Hu CC, Tabesh A, Falangola MF, Helpern JA. Effect of CSF suppression for diffusional kurtosis imaging. J Magn Reson Imaging. 2013;37:365–71.

    Article  PubMed  Google Scholar 

  16. Helpern JA, Adisetiyo V, Falangola MF, Hu C, Di Martino A, Williams K, Castellanos FX, Jensen JH. Preliminary evidence of altered gray and white matter microstructural development in the frontal lobe of adolescents with attention-deficit hyperactivity disorder: a diffusional kurtosis imaging study. J Magn Reson Imaging. 2011;33:17–23.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lu H, Jensen JH, Hu C, Falangola MF, Ramani A, Ferris S, Helpern JA. Alterations in cerebral microstructural integrity in normal aging and in Alzheimer’s Disease: a multi-contrast diffusion MRI study. Proceedings of the 14th Annual Meeting of ISMRM, Seattle, Washington, 2006 (abstract 723).

  18. Qian W, Zhang Z, Wu EX, Cheung MM, Chan Q, Khong P-L, Kim M. Characterization of neural tissues in humans using Diffusion Kurtosis Imaging. Proceedings of the 19th Annual Meeting of ISMRM. Montreal, Canada, 2011 (abstract 3948).

  19. Lu H, Jensen JH, Ramani A, Helpern JA. Three-dimensional characterization of non-Gaussian water diffusion in humans using diffusion kurtosis imaging. NMR Biomed. 2006;19:236–47.

    Article  PubMed  Google Scholar 

  20. Lebel C, Gee M, Camicioli R, Wieler M, Martin W, Beaulieu C. Diffusion tensor imaging of white matter tract evolution over the lifespan. Neuroimage. 2012;60:340–52.

    Article  CAS  PubMed  Google Scholar 

  21. Hasan KM, Kamali A, Abid H, Kramer LA, Fletcher JM, Ewing-Cobbs L. Quantification of the spatiotemporal microstructural organization of the human brain association, projection and commissural pathways across the lifespan using diffusion tensor tractography. Brain Struct Funct. 2010;214:361–73.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kochunov P, Williamson DE, Lancaster J, Fox P, Cornell J, Blangero J, Glahn DC. Fractional anisotropy of water diffusion in cerebral white matter across the lifespan. Neurobiol Aging. 2010;33:9–20.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Westlye LT, Walhovd KB, Dale AM, Bjørnerud A, Due-Tønnessen P, Engvig A, Grydeland H, Tamnes CK, Ostby Y, Fjell AM. Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry. Cereb Cortex. 2010;20:2055–68.

    Article  PubMed  Google Scholar 

  24. Catani M, Allin MP, Husain M, Pugliese L, Mesulam MM, Murray RM, Jones DK. Symmetries in human brain language pathways correlate with verbal recall. Proc Natl Acad Sci USA. 2007;104:17163–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jung RE, Haier RJ. The parieto-frontal integration theory (P-FIT) of intelligence: converging neuroimaging evidence. J Behav Brain Sci. 2007;30:135–54.

    Article  Google Scholar 

  26. Zhang J, Evans A, Hermoye L, Lee SK, Wakana S, Zhang W, Donohue P, Miller MI, Huang H, Wang X, van Zijl PC, Mori S. Evidence of slow maturation of the superior longitudinal fasciculus in early childhood by diffusion tensor imaging. Neuroimage. 2007;38:239–47.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dubois J, Hertz-Pannier L, Dehaene-Lambertz G, Cointepas Y, Le Bihan D. Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. Neuroimage. 2006;30:1121–32.

    Article  CAS  PubMed  Google Scholar 

  28. Dubois J, Dehaene-Lambertz G, Perrin M, Mangin JF, Cointepas Y, Duchesnay E, Le Bihan D, Hertz-Pannier L. Asynchrony of the early maturation of white matter bundles in healthy infants: quantitative landmarks revealed noninvasively by diffusion tensor imaging. Hum Brain Mapp. 2008;29:14–27.

    Article  PubMed  Google Scholar 

  29. Hermoye L, Saint-Martin C, Cosnard G, Lee SK, Kim J, Nassogne MC, Menten R, Clapuyt P, Donohue PK, Hua K, Wakana S, Jiang H, van Zijl PC, Mori S. Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood. Neuroimage. 2006;29:493–504.

    Article  PubMed  Google Scholar 

  30. Catani M, Jones DK, Donato R, Ffytche DH. Occipito-temporal connections in the human brain. Brain. 2003;126:2093–107.

    Article  PubMed  Google Scholar 

  31. Aboitiz F, Montiel J. One hundred million years of interhemispheric communication: the history of the corpus callosum. Braz J Med Biol Res. 2003;36:409–20.

    Article  CAS  PubMed  Google Scholar 

  32. Caverzasi E, Papinutto N, Amirbekian B, Berger MS, Henry RG. Q-Ball of inferior fronto-occipital fasciculus and beyond. PLoS One. 2014;9:e100274.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hasan KM, Sankar A, Halphen C, Kramer LA, Brandt ME, Juranek J, Cirino PT, Fletcher JM, Papanicolaou AC, Ewing-Cobbs L. Development and organization of the human brain tissue compartments across the lifespan using diffusion tensor imaging. Neuroreport. 2007;18:1735–9.

    Article  PubMed  Google Scholar 

  34. Hasan KM, Halphen C, Boska MD, Narayana PA. Diffusion tensor metrics, T2 relaxation, and volumetry of the naturally aging human caudate nuclei in healthy young and middle-aged adults: possible implications for the neurobiology of human brain aging and disease. Magn Reson Med. 2008;59:7–13.

    Article  PubMed  Google Scholar 

  35. Camara E, Bodammer N, Rodriguez-Fornells A, Tempelmann C. Age-related water diffusion changes in human brain: a voxel based approach. Neuroimage. 2007;34:1588–99.

    Article  PubMed  Google Scholar 

  36. Lee CY, Tabesh A, Nesland T, Jensen JH, Helpern JA, Spampinato MV, Bonilha L. Human brain asymmetry in microstructural connectivity demonstrated by diffusional kurtosis imaging. Brain Res. 2014;1588:73–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saenger VM, Barrios FA, Martínez-Gudiño ML, Alcauter S. Hemispheric asymmetries of functional connectivity and grey matter volume in the default mode network. Neuropsychologia. 2012;50:1308–15.

    Article  PubMed  Google Scholar 

  38. Goldberg E, Roediger D, Kucukboyaci NE, Carlson C, Devinsky O, Kuzniecky R, Halgren E, Thesen T. Hemispheric asymmetries of cortical volume in the human brain. Cortex. 2013;49:200–10.

    Article  PubMed  Google Scholar 

  39. Knecht S, Dräger B, Deppe M, Bobe L, Lohmann H, Flöel A, Ringelstein EB, Henningsen H. Handedness and hemispheric language dominance in healthy humans. Brain. 2000;123:2512–8.

    Article  PubMed  Google Scholar 

  40. Bernard JA, Taylor SF, Seidler RD. Handedness, dexterity, and motor cortical representations. J Neurophysiol. 2011;105:88–99.

    Article  PubMed  Google Scholar 

  41. Jensen J, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed. 2010;23:698–710.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Morgan A. McClure, a medical editor at North Sichuan Medical College, for English grammar correction and revision.

Conflict of Interest

The authors have not declared any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. F. Yang PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S.K., Wang, J.L., Bing, L. et al. Regional Values of Diffusional Kurtosis Estimates in the Healthy Brain during Normal Aging. Clin Neuroradiol 27, 283–298 (2017). https://doi.org/10.1007/s00062-015-0490-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-015-0490-z

Keywords

Navigation