Skip to main content

Advertisement

Log in

Perspectives of Ultra-High-Field MRI in Neuroradiology

  • Review Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Magnetic resonance imaging (MRI) is one of the most important methods for the diagnosis and therapy monitoring of various diseases. Today, magnets up to 3 T are standard. This review will give an overview of the clinical perspectives of ultra-high field MRI, meaning mainly 7 T.

Methods

Literature review with focus on clinical applications of 7 T imaging in neuroscience combined with examples of own studies and perspectives.

Results

This high-resolution technique offers the potential to improve certain tissue contrasts and signal in functional (fMRI) and metabolic (MRS) imaging. This overview demonstrates already existing potentials and advantages of the ultra-high magnetic field for central nervous system (CNS) diseases.

Conclusions

Although there are still some technical challenges for brain and spine imaging at 7 T, the method has clear benefit in selected structural, functional, and metabolic imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. European Federation of Neurological Societies Task Force. The future of magnetic resonance-based techniques in neurology. Eur J Neurol. 2001;8(1):17–25.

    Article  Google Scholar 

  2. Balchandani P, Naidich TP. Ultra-high-field MR neuroimaging. AJNR Am J Neuroradiol. 2014 Dec 18. [Epub ahead of print]

  3. Vaughan JT, Garwood M, Collins CM, Liu W, DelaBarre L, Adriany G, Andersen P, Merkle H, Goebel R, Smith MB, Ugurbil K. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med. 2001;46(1):24–30.

    Article  CAS  PubMed  Google Scholar 

  4. Ugurbil K, Adriany G, Andersen P, Chen W, Garwood M, Gruetter R, Henry PG, Kim SG, Lieu H, Tkac I, Vaughan T, Van De Moortele PF, Yacoub E, Zhu XH. Ultrahigh field magnetic resonance imaging and spectroscopy. Magn Reson Imaging. 2003;21(10):1263–81.

    Article  PubMed  Google Scholar 

  5. Wargo CJ, Moore J, Gore JC. A comparison and evaluation of reduced-FOV methods for multi-slice 7T human imaging. Magn Reson Imaging. 2013;31(8):1349–59.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Yacoub, E., Van De Moortele PF, Shmuel A, Ugurbil K. Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans. Neuroimage. 2005;24(3):738–50.

    Article  PubMed  Google Scholar 

  7. Pohmann R, Speck O, Scheffler K. Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 T using current receive coil arrays. Magn Reson Med. 2015 Mar 29. doi: 10.1002/mrm.25677. [Epub ahead of print]

  8. Chadzynski GL, Pohmann R, Shajan G, Kolb R, Bisdas S, Klose U, Scheffler K. In vivo proton magnetic resonance spectroscopic imaging of the healthy human brain at 9.4 T: initial experience. MAGMA. 2015;28(3):239–49.

    Article  CAS  PubMed  Google Scholar 

  9. Ehses P, Bause J, Shajan G, Scheffler K. Efficient generation of T2*-weighted contrast by interslice echo-shifting for human functional and anatomical imaging at 9.4 Tesla. Magn Reson Med. 2014 Dec 2. doi: 10.1002/mrm.25570. [Epub ahead of print]

  10. van der Kolk AG, Hendrikse J, Zwanenburg JJ, Visser F, Luijten PR. Clinical applications of 7 T MRI in the brain. Eur J Radiol. 2013;82(5):708–18.

    Article  PubMed  Google Scholar 

  11. Speck O, Tempelmann C. Human 7T MRI: first clinical and neuroscientific applications. Neuroradiol J. 2010;23(5):535–46.

    Article  CAS  PubMed  Google Scholar 

  12. Theysohn JM, Maderwald S, Kraff O, Moenninghoff C, Ladd ME, Ladd SC. Subjective acceptance of 7 Tesla MRI for human imaging. MAGMA. 2008;21(1–2):63–72.

    Article  PubMed  Google Scholar 

  13. Theysohn JM, Kraff O, Maderwald S, Schlamann MU, de Greiff A, Forsting M, Ladd SC, Ladd ME, Gizewski ER. The human hippocampus at 7 T–in vivo MRI. Hippocampus. 2009;19(1):1–7.

    Article  PubMed  Google Scholar 

  14. Derix J, Yang S, Lusebrink F, Fiederer LD, Schulze-Bonhage A, Aertsen A, Speck O, Ball T. Visualization of the amygdalo-hippocampal border and its structural variability by 7T and 3T magnetic resonance imaging. Hum Brain Mapp. 2014;35(9):4316–29.

    Article  PubMed  Google Scholar 

  15. Coras R, Milesi G, Zucca I, Mastropietro A, Scotti A, Figini M, Muhlebner A, Hess A, Graf W, Tringali G, Blumcke I, Villani F, Didato G, Frassoni C, Spreafico R, Garbelli R. 7T MRI features in control human hippocampus and hippocampal sclerosis: An ex vivo study with histologic correlations. Epilepsia. 2014;55(12):2003–16.

    Article  PubMed  Google Scholar 

  16. Breyer T, Wanke I, Maderwald S, Woermann FG, Kraff O, Theysohn JM, Ebner A, Forsting M, Ladd ME, Schlamann M. Imaging of patients with hippocampal sclerosis at 7 Tesla: initial results. Acad Radiol. 2010;17(4):421–6.

    Article  PubMed  Google Scholar 

  17. deCharms RC Applications of real-time fMRI. Nat Rev Neurosci. 2008;9(9):720–9.

    Article  CAS  PubMed  Google Scholar 

  18. De Ciantis A, Barkovich AJ, Cosottini M, Barba C, Montanaro D, Costagli M, Tosetti M, Biagi L, Dobyns WB, Guerrini R. Ultra-high-field MR imaging in polymicrogyria and epilepsy. AJNR Am J Neuroradiol. 2015;36(2):309–16.

    Article  PubMed  Google Scholar 

  19. Madan N, Grant PE. New directions in clinical imaging of cortical dysplasias. Epilepsia. 2009;50 Suppl 9:9–18.

    Article  PubMed  Google Scholar 

  20. Theysohn JM, Kraff O, Maderwald S, Barth M, Ladd SC, Forsting M, Ladd ME, Gizewski ER. 7 T MRI of microbleeds and white matter lesions as seen in vascular dementia. J Magn Reson Imaging. 2011;33(4):782–91.

    Article  PubMed  Google Scholar 

  21. van Veluw SJ, Jolink WM, Hendrikse J, Geerlings MI, Luijten PR, Biessels GJ, Klijn CJ. Cortical microinfarcts on 7T MRI in patients with spontaneous intracerebral hemorrhage. J Cereb Blood Flow Metab. 2014;34(7):1104–6.

    Article  PubMed Central  PubMed  Google Scholar 

  22. van Veluw SJ, Zwanenburg JJ, Engelen-Lee J, Spliet WG, Hendrikse J, Luijten PR, Biessels GJ. In vivo detection of cerebral cortical microinfarcts with high-resolution 7T MRI. J Cereb Blood Flow Metab. 2013;33(3):322–9.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Moenninghoff C, Kraff O, Maderwald S, Umutlu L, Theysohn JM, Ringelstein A, Wrede KH, Deuschl C, Altmeppen J, Ladd ME, Forsting M, Quick HH, Schlamann M. Diffuse axonal injury at ultra-high field MRI. PLoS One. 2015;10(3):e0122329.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Kang CK, Park CA, Lee H, Kim SH, Park CW, Kim YB, Cho ZH. Hypertension correlates with lenticulostriate arteries visualized by 7T magnetic resonance angiography. Hypertension. 2009;54(5):1050–6.

    Article  CAS  PubMed  Google Scholar 

  25. Bian W, Hess CP, Chang SM, Nelson SJ, Lupo JM. Susceptibility-weighted MR imaging of radiation therapy-induced cerebral microbleeds in patients with glioma: a comparison between 3T and 7T. Neuroradiology. 2014;56(2):91–6.

    Article  PubMed  Google Scholar 

  26. Schlamann M, Maderwald S, Becker W, Kraff O, Theysohn JM, Mueller O, Sure U, Wanke I, Ladd ME, Forsting M, Schaefer L, Gizewski ER. Cerebral cavernous hemangiomas at 7 Tesla: initial experience. Acad Radiol. 2010;17(1):3–6.

    Article  PubMed  Google Scholar 

  27. Dammann P, Barth M, Zhu Y, Maderwald S, Schlamann M, Ladd ME, Sure U. Susceptibility weighted magnetic resonance imaging of cerebral cavernous malformations: prospects, drawbacks, and first experience at ultra-high field strength (7-Tesla) magnetic resonance imaging. Neurosurg Focus. 2010;29(3):E5.

    Article  PubMed  Google Scholar 

  28. Kollia K, Maderwald S, Putzki N, Schlamann M, Theysohn JM, Kraff O, Ladd ME, Forsting M, Wanke I. First clinical study on ultra-high-field MR imaging in patients with multiple sclerosis: comparison of 1.5T and 7T. AJNR Am J Neuroradiol. 2009;30(4):699–702.

    Article  CAS  PubMed  Google Scholar 

  29. Mainero C, Benner T, Radding A, van der Kouwe A, Jensen R, Rosen BR, Kinkel RP. In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI. Neurology. 2009;73(12):941–8.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Metcalf M, Xu D, Okuda DT, Carvajal L, Srinivasan R, Kelley DA, Mukherjee P, Nelson SJ, Vigneron DB, Pelletier D. High-resolution phased-array MRI of the human brain at 7 T: initial experience in multiple sclerosis patients. J Neuroimaging. 2010;20(2):141–7.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Harrison DM, Oh J, Roy S, Wood ET, Whetstone A, Seigo MA, Jones CK, Pham D, van Zijl P, Reich DS, Calabresi PA. Thalamic lesions in multiple sclerosis by 7T MRI: Clinical implications and relationship to cortical pathology. Mult Scler. 2015 Jan 12. pii: 1352458514558134. [Epub ahead of print]

  32. Ge Y, Zohrabian VM, Grossman RI. Seven-Tesla magnetic resonance imaging: new vision of microvascular abnormalities in multiple sclerosis. Arch Neurol. 2008;65(6):812–6.

    PubMed Central  PubMed  Google Scholar 

  33. Tallantyre EC, Brookes MJ, Dixon JE, Morgan PS, Evangelou N, Morris PG. Demonstrating the perivascular distribution of MS lesions in vivo with 7-Tesla MRI. Neurology. 2008;70(22):2076–8.

    Article  CAS  PubMed  Google Scholar 

  34. Absinta M, Sati P, Gaitan MI, Maggi P, Cortese IC, Filippi M, Reich DS. Seven-tesla phase imaging of acute multiple sclerosis lesions: a new window into the inflammatory process. Ann Neurol. 2013;74(5):669–78.

    Article  CAS  PubMed  Google Scholar 

  35. Bian W, Harter K, Hammond-Rosenbluth KE, Lupo JM, Xu D, Kelley DA, Vigneron DB, Nelson SJ, Pelletier D. A serial in vivo 7T magnetic resonance phase imaging study of white matter lesions in multiple sclerosis. Mult Scler. 2013;19(1):69–75.

    Article  PubMed  Google Scholar 

  36. Gaitan MI, Sati P, Inati SJ, Reich DS. Initial investigation of the blood-brain barrier in MS lesions at 7 T. Mult Scler. 2013;19(8):1068–73.

    Article  PubMed  Google Scholar 

  37. Nielsen AS, Kinkel RP, Tinelli E, Benner T, Cohen-Adad J, Mainero C. Focal cortical lesion detection in multiple sclerosis: 3 Tesla DIR versus 7 Tesla FLASH-T2. J Magn Reson Imaging. 2012;35(3):537–42.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Kilsdonk ID, de Graaf WL, Soriano AL, Zwanenburg JJ, Visser F, Kuijer JP, Geurts JJ, Pouwels PJ, Polman CH, Castelijns JA, Luijten PR, Barkhof F, Wattjes MP. Multicontrast MR imaging at 7T in multiple sclerosis: highest lesion detection in cortical gray matter with 3D-FLAIR. AJNR Am J Neuroradiol. 2013;34(4):791–6.

    Article  CAS  PubMed  Google Scholar 

  39. Al-Radaideh AM, Wharton SJ, Lim SY, Tench CR, Morgan PS, Bowtell RW, Constantinescu CS, Gowland PA. Increased iron accumulation occurs in the earliest stages of demyelinating disease: an ultra-high field susceptibility mapping study in Clinically Isolated Syndrome. Mult Scler. 2013;19(7):896–903.

    Article  CAS  PubMed  Google Scholar 

  40. Cohen-Adad J, Benner T, Greve D, Kinkel RP, Radding A, Fischl B, Rosen BR, Mainero C. In vivo evidence of disseminated subpial T2* signal changes in multiple sclerosis at 7 T: a surface-based analysis. Neuroimage. 2011;57(1):55–62.

    Article  CAS  PubMed  Google Scholar 

  41. Brass SD, Chen NK, Mulkern RV, Bakshi R. Magnetic resonance imaging of iron deposition in neurological disorders. Top Magn Reson Imaging. 2006;17(1):31–40.

    Article  PubMed  Google Scholar 

  42. Schuff N. Potential role of high-field MRI for studies in Parkinson’s disease. Mov Disord. 2009;24 Suppl 2:S684–90.

    Article  PubMed  Google Scholar 

  43. Lotfipour AK, Wharton S, Schwarz ST, Gontu V, Schafer A, Peters AM, Bowtell RW, Auer DP, Gowland PA, Bajaj NP. High resolution magnetic susceptibility mapping of the substantia nigra in Parkinson's disease. J Magn Reson Imaging. 2012;35(1):48–55.

    Article  PubMed  Google Scholar 

  44. Kwon DH, Kim JM, Oh SH, Jeong HJ, Park SY, Oh ES, Chi JG, Kim YB, Jeon BS, Cho ZH. Seven-Tesla magnetic resonance images of the substantia nigra in Parkinson disease. Ann Neurol. 2012;71(2):267–77.

    Article  PubMed  Google Scholar 

  45. Cosottini M, Frosini D, Pesaresi I, Donatelli G, Cecchi P, Costagli M, Biagi L, Ceravolo R, Bonuccelli U, Tosetti M. Comparison of 3T and 7T susceptibility-weighted angiography of the substantia nigra in diagnosing parkinson disease. AJNR Am J Neuroradiol. 2015;36(3):461-6.

  46. Blazejewska AI, Schwarz ST, Pitiot A, Stephenson MC, Lowe J, Bajaj N, Bowtell RW, Auer DP, Gowland PA. Visualization of nigrosome 1 and its loss in PD: pathoanatomical correlation and in vivo 7 T MRI. Neurology. 2013;81(6):534–40.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Kerchner GA. Ultra-high field 7T MRI: a new tool for studying Alzheimer’s disease. J Alzheimers Dis. 2011;26 Suppl 3:91–5.

    PubMed  Google Scholar 

  48. Wisse LE, Biessels GJ, Heringa SM, Kuijf HJ, Koek DH, Luijten PR, Geerlings MI, Utrecht G. Vascular Cognitive Impairment Study. Hippocampal subfield volumes at 7T in early Alzheimer’s disease and normal aging. Neurobiol Aging. 2014;35(9):2039–45.

    Article  PubMed  Google Scholar 

  49. Schreiner SJ, Liu X, Gietl AF, Wyss M, Steininger SC, Gruber E, Treyer V, Meier IB, Kalin AM, Leh SE, Buck A, Nitsch RM, Pruessmann KP, Hock C, Unschuld PG. Regional Fluid-Attenuated Inversion Recovery (FLAIR) at 7 Tesla correlates with amyloid beta in hippocampus and brainstem of cognitively normal elderly subjects. Front Aging Neurosci. 2014;6:240.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Maderwald S, Ladd SC, Gizewski ER, Kraff O, Theysohn JM, Wicklow K, Moenninghoff C, Wanke I, Ladd ME, Quick HH. To TOF or not to TOF: strategies for non-contrast-enhanced intracranial MRA at 7 T. MAGMA. 2008;21(1–2):159–67.

    Article  PubMed  Google Scholar 

  51. Wrede KH, Johst S, Dammann P, Ozkan N, Monninghoff C, Kraemer M, Maderwald S, Ladd ME, Sure U, Umutlu L, Schlamann M. Improved cerebral time-of-flight magnetic resonance angiography at 7 Tesla–feasibility study and preliminary results using optimized venous saturation pulses. PLoS One. 2014;9(9):e106697.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Umutlu L, Theysohn N, Maderwald S, Johst S, Lauenstein TC, Moenninghoff C, Goericke SL, Dammann P, Wrede KH, Ladd ME, Forsting M, Schlamann M. 7 Tesla MPRAGE imaging of the intracranial arterial vasculature: nonenhanced versus contrast-enhanced. Acad Radiol. 2013;20(5):628–34.

    Article  PubMed  Google Scholar 

  53. Monninghoff C, Maderwald S, Theysohn JM, Kraff O, Ladd SC, Ladd ME, Forsting M, Quick HH, Wanke I. Evaluation of intracranial aneurysms with 7 T versus 1.5 T time-of-flight MR angiography – initial experience. Rofo. 2009;181(1):16–23.

    Article  CAS  PubMed  Google Scholar 

  54. Monninghoff C, Maderwald S, Wanke I. Pre-interventional assessment of a vertebrobasilar aneurysm with 7 T time-of-flight MR angiography. Rofo. 2009;181(3):266–8.

    Article  CAS  PubMed  Google Scholar 

  55. Wrede KH, Dammann P, Monninghoff C, Johst S, Maderwald S, Sandalcioglu IE, Muller O, Ozkan N, Ladd ME, Forsting M, Schlamann MU, Sure U, Umutlu L. Non-enhanced MR imaging of cerebral aneurysms: 7 Tesla versus 1.5 Tesla. PLoS One. 2014;9(1):e84562.

    Article  PubMed Central  PubMed  Google Scholar 

  56. van der Kolk AG, Zwanenburg JJ, Brundel M, Biessels GJ, Visser F, Luijten PR, Hendrikse J. Distribution and natural course of intracranial vessel wall lesions in patients with ischemic stroke or TIA at 7.0 Tesla MRI. Eur Radiol. 2015;25(6):1692–700.

    Article  PubMed  Google Scholar 

  57. Alvarez-Linera J. 3T MRI: advances in brain imaging. Eur J Radiol. 2008;67(3):415–26.

    Article  PubMed  Google Scholar 

  58. Gizewski ER, de Greiff A, Maderwald S, Timmann D, Forsting M, Ladd ME. fMRI at 7 T: whole-brain coverage and signal advantages even infratentorially? Neuroimage. 2007;37(3):761–8.

    Article  PubMed  Google Scholar 

  59. Beisteiner R, Robinson S, Wurnig M, Hilbert M, Merksa K, Rath J, Hollinger I, Klinger N, Marosi C, Trattnig S, Geissler A. Clinical fMRI: evidence for a 7T benefit over 3T. Neuroimage. 2011;57(3):1015–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Sanchez-Panchuelo RM, Francis S, Bowtell R, Schluppeck D. Mapping human somatosensory cortex in individual subjects with 7T functional MRI. J Neurophysiol. 2010;103(5):2544–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Gizewski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gizewski, E., Mönninghoff, C. & Forsting, M. Perspectives of Ultra-High-Field MRI in Neuroradiology. Clin Neuroradiol 25 (Suppl 2), 267–273 (2015). https://doi.org/10.1007/s00062-015-0437-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-015-0437-4

Keywords

Navigation