Skip to main content

Advertisement

Log in

Limbic Tumors of the Temporal Lobe: Radiologic–Pathologic Correlation

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to assess imaging and pathologic characteristics of limbic tumors. Our hypothesis was that temporal lobe limbic tumors have distinctive features from extralimbic tumors.

Methods

This retrospective radiologic–pathologic correlation study of primary temporal lobe tumors (excluding glioblastoma) distinguished limbic from extralimbic tumors based on preoperative magnetic resonance imaging. Limbic tumors were categorized according to Yaşargil’s classification into (1) mediobasal temporal (mbT), (2) insular-temporo-opercular (I-TO), and (3) fronto-orbital-insular-temporopolar (FO-I-TP).

Results

A total of 50 cases with a mean age at diagnosis of 38 ± 19.9 years (14 women, 36 men) were included. Pathologic diagnoses were as follows: 20 anaplastic astrocytomas, 11 gangliogliomas, 8 astrocytomas (World Health Organization grade II), 3 pilocytic astrocytomas, 2 dysembryoplastic neuroepithelial tumors, 2 oligodendrogliomas (grade II), 2 anaplastic oligodendrogliomas, 1 low-grade glioneuronal tumor, and 1 atypical extraventricular neurocytoma. In all, 36 tumors were limbic and displayed consistent growth patterns (16 mbT, 11 I-TO, 8 FO-I-TP, and 1 pantemporal) and 14 were extralimbic. There were no differences between limbic and extralimbic tumors with regard to age, sex, pathologic diagnosis, and presentation with seizures. mbT tumors had more frequent neuronal differentiation (50 %) than I-TO (0 %) and FO-I-TP (25 %) tumors (chi-square = 7.8, df = 2, p = 0.02). Neuronal differentiation correlated with lower grade (r = 0.52, p < 0.01) and younger age (r = 0.52, p < 0.01).

Conclusions

Limbic tumors displayed consistent growth routes. mbT limbic tumors had more frequent neuronal differentiation, which may result from proximity to the neurogenic subgranular zone of the hippocampus. Neuronal differentiation was maximal in mbT and lowest in I-TO and FO-I-TP tumors and correlated with lower tumor grade and younger age at diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. MacLean PD. The triune brain in evolution: role in paleocerebral functions. New York: Plenum Press; 1990.

    Google Scholar 

  2. Papez JW. A proposed mechanism of emotion. 1937. J Neuropsychiatry Clin Neurosci. 1995;7:103–12.

    Article  CAS  PubMed  Google Scholar 

  3. Brodal A. Neurological anatomy in relation to clinical medicine. New York: Oxford University Press; 1981.

    Google Scholar 

  4. Willis T. Cerebri Anatome, Cui Accessit Nervorum Descripto Et Usus [Electronic Resource]/Studio Thomæ Willis. Londini: Typis Tho. Roycroft, Impensis Jo. Martyn & Ja. Allestry; 1664.

  5. Broca P. Anatomie compareÌe des circonvolutions ceÌreÌbrales le grand lobe limbique et la scissure limbique dans la seÌrie des mammifeÌres. vol. 1. 1878. p. 385–498.

  6. Vogt C, Vogt O. Allgemeine Ergebnisse Unserer Hirnforschung. Leipzig: J. A. Barth; 1919.

  7. Heimer L, Van Hoesen GW. The limbic lobe and its output channels: implications for emotional functions and adaptive behavior. Neurosci Biobehav Rev. 2006;30:126–47.

    Article  PubMed  Google Scholar 

  8. Yaşargil MG, von Ammon K, Cavazos E, Doczi T, Reeves JD, Roth P. Tumours of the limbic and paralimbic systems. Acta Neurochir (Wien). 1992;118:40–52.

    Article  Google Scholar 

  9. Louis D, Ohgaki H, Wiestler O, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Gilbertson R, Gutmann D. Tumorigenesis in the brain: location, location, location. Cancer Res. 2007;67:5579–82.

    Article  CAS  PubMed  Google Scholar 

  11. Quiñones-Hinojosa A, Chaichana K. The human subventricular zone: a source of new cells and a potential source of brain tumors. Exp Neurol. 2007;205:313–24.

    Article  PubMed  Google Scholar 

  12. Gloor P. The temporal lobe and limbic system. Oxford University Press; 1997.

  13. Economo C, Parker S. The cytoarchitectonics of the human cerebral cortex. London: Humphrey Milford, Oxford University Press; 1929.

    Google Scholar 

  14. Bendersky M, Rugilo C, Kochen S, Schuster G, Sica RE. Magnetic resonance imaging identifies cytoarchitectonic subtypes of the normal human cerebral cortex. J Neurol Sci. 2003;211:75–80.

    Article  PubMed  Google Scholar 

  15. Dolecek TA, Propp JM, Stroup NE, Kruchko C. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol. 2012;14:v1–49.

    Google Scholar 

  16. Eriksson PS, Perfilieva E, Björk-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4:1313–7.

    Article  CAS  PubMed  Google Scholar 

  17. Dirks P. Brain tumour stem cells: the undercurrents of human brain cancer and their relationship to neural stem cells. Philos Trans R Soc Lond B Biol Sci. 2008;363:139–52.

    Google Scholar 

  18. Blümcke I, Wiestler O. Gangliogliomas: an intriguing tumor entity associated with focal epilepsies. J Neuropathol Exp Neurol. 2002;61:575–84.

    PubMed  Google Scholar 

  19. Vergani F, Martino J, Gozé C, Rigau V, Duffau H. World health organization grade II gliomas and subventricular zone: anatomic, genetic, and clinical considerations. Neurosurgery. 2011;68:1293–8.

    PubMed  Google Scholar 

  20. Fried I, Kim JH, Spencer DD. Limbic and neocortical gliomas associated with intractable seizures: a distinct clinicopathological group. Neurosurgery. 1994;34:815–23. (Discussion 823–4).

    Google Scholar 

  21. Mandonnet E, Capelle L, Duffau H. Extension of paralimbic low grade gliomas: toward an anatomical classification based on white matter invasion patterns. J Neurooncol. 2006;78:179–85.

    Google Scholar 

  22. Demaerel P, Van Dessel W, Van Paesschen W, Vandenberghe R, Van Laere K, Linn J. Autoimmune-mediated encephalitis. Neuroradiology. 2011;53:837–51.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Capizzano MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capizzano, A., Kirby, P. & Moritani, T. Limbic Tumors of the Temporal Lobe: Radiologic–Pathologic Correlation. Clin Neuroradiol 25, 127–135 (2015). https://doi.org/10.1007/s00062-014-0287-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-014-0287-5

Keywords

Navigation