Skip to main content
Log in

Remodelling and adverse remodelling in CAD

Remodelling und Maladaption bei koronarer Herzerkrankung

  • Main topic
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Remodelling is the adaptive or maladaptive response to cardiac overload or injury resulting in changes of size and function of the heart. The final pathway of maladaptive or adverse cardiac remodelling is the evolution of heart failure or sudden cardiac death. In coronary artery disease, ischemic injury leads to changes in the cellular and extra-cellular architecture of the infarcted and non-infarcted region resulting in cavity enlargement and loss of contractility of the entire heart. During the last three decades, potential therapeutic concepts have been established and reversal of adverse remodelling could be demonstrated in up-to end-stage disease. A further understanding of the underlying cellular, extracellular, molecular and genetic alterations in ischemic remodelling should reveal other promising targets for prevention and reversal of remodelling.

Zusammenfassung

Kardiales Remodelling ist die morphologische und funktionelle Adaptation oder Maladaptation des Herzens als Reaktion auf einen physiologischen oder pathologischen Stressor. Sie wird durch genetische, molekulare, zelluläre und extrazelluläre Veränderungen vermittelt. Dabei stellen die Entwicklung einer Herzinsuffizienz und der plötzliche Herztod die pathophysiologische Endstrecke eines maladaptiven Remodelling dar. In den letzten 3 Jahrzehnten haben sich potente Therapiekonzepte des kardialen Remodelling etabliert und gezeigt, dass eine Reversion des Remodelling auch im späten Stadium der Herzinsuffizienz noch möglich ist. Das tiefere Verständnis der kardialen Umbauvorgänge auf genetischer, molekularer, zellulärer und extrazellulärer Ebene ist Voraussetzung für weitere vielversprechende Therapieansätze zur Prävention und Reversion des Remodelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Goldstein LB, Adams R, Alberts MJ et al (2006) Primary prevention of ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council: cosponsored by the Atherosclerotic Peripheral Vascular Disease Interdisciplinary Working Group; Cardiovascular Nursing Council; Clinical Cardiology Council; Nutrition, Physical Activity, and Metabolism Council; and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation 113:e873–923

    Article  PubMed  Google Scholar 

  2. Hochman JS, Bulkley BH (1982) Expansion of acute myocardial infarction: an experimental study. Circulation 65:1446–1450

    Article  PubMed  CAS  Google Scholar 

  3. Pfeffer JM, Pfeffer MA, Braunwald E (1985) Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res 57:84–95

    Article  PubMed  CAS  Google Scholar 

  4. Pfeffer MA, Braunwald E (1990) Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81:1161–1172

    Article  PubMed  CAS  Google Scholar 

  5. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling–concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 35:569–582

    Article  PubMed  CAS  Google Scholar 

  6. Konstam MA, Rousseau MF, Kronenberg MW et al (1992) Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dysfunction in patients with heart failure. SOLVD Investigators. Circulation 86:431–438

    Article  PubMed  CAS  Google Scholar 

  7. Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358:1370–1380

    Article  PubMed  CAS  Google Scholar 

  8. Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA (2006) Controversies in ventricular remodelling. Lancet 367:356–367

    Article  PubMed  Google Scholar 

  9. Maron BJ, Pelliccia A (2006) The heart of trained athletes: cardiac remodeling and the risks of sports, including sudden death. Circulation 114:1633–1644

    Article  PubMed  Google Scholar 

  10. Pfeffer MA, Pfeffer JM, Fishbein MC et al (1979) Myocardial infarct size and ventricular function in rats. Circ Res 44:503–512

    Article  PubMed  CAS  Google Scholar 

  11. Zornoff LA, Paiva SA, Duarte DR, Spadaro J (2009) Ventricular remodeling after myocardial infarction: concepts and clinical implications. Arq Bras Cardiol 92:150–164

    Article  PubMed  Google Scholar 

  12. Weisman HF, Bush DE, Mannisi JA et al (1988) Cellular mechanisms of myocardial infarct expansion. Circulation 78:186–201

    Article  PubMed  CAS  Google Scholar 

  13. Hutchins GM, Bulkley BH (1978) Infarct expansion versus extension: two different complications of acute myocardial infarction. Am J Cardiol 41:1127–1132

    Article  PubMed  CAS  Google Scholar 

  14. Whittaker P, Boughner DR, Kloner RA (1991) Role of collagen in acute myocardial infarct expansion. Circulation 84:2123–2134

    Article  PubMed  CAS  Google Scholar 

  15. Hofmann U, Bonz A, Frantz S, Hu K et al (2012) A collagen alpha2(I) mutation impairs healing after experimental myocardial infarction. Am J Pathol 180:113–122

    Article  PubMed  CAS  Google Scholar 

  16. Hillenbrand HB, Sandstede J, Stork S et al (2011) Remodeling of the infarct territory in the time course of infarct healing in humans. Magma 24:277–284

    Article  PubMed  CAS  Google Scholar 

  17. Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E (1991) Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol 260:H1406–1414

    PubMed  CAS  Google Scholar 

  18. Herrmann S, Stork S, Niemann M et al (2011) Low-gradient aortic valve stenosis myocardial fibrosis and its influence on function and outcome. J Am Coll Cardiol 58:402–412

    Article  PubMed  Google Scholar 

  19. Gajarsa JJ, Kloner RA (2011) Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities. Heart Fail Rev 16:13–21

    Article  PubMed  Google Scholar 

  20. Olivetti G, Capasso JM, Sonnenblick EH, Anversa P (1990) Side-to-side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats. Circ Res 67:23–34

    Article  PubMed  CAS  Google Scholar 

  21. Rumberger JA (1994) Ventricular dilatation and remodeling after myocardial infarction. Mayo Clin Proc 69:664–674

    PubMed  CAS  Google Scholar 

  22. Gaudron P, Kugler K, Hu K et al (2001) Time course of cardiac struc-tural, functional and electrical changes in asymptomatic patients after myocardial in-farction: their interrelation and prognostic impact. J Am Coll Cardiol 38:33–40

    Article  PubMed  CAS  Google Scholar 

  23. Gaudron P, Eilles C, Kugler I, Ertl G (1993) Progressive left ventricular dysfunction and remodeling after myocardial infarction. Potential mechanisms and early predictors. Circulation 87:755–763

    Article  PubMed  CAS  Google Scholar 

  24. Konstam MA, Kramer DG, Patel AR et al (2011) Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC Cardiovasc Imaging 4:98–108

    Article  PubMed  Google Scholar 

  25. Solomon SD, Skali H, Anavekar NS et al (2005) Changes in ventricular size and function in patients treated with valsartan, captopril, or both after myocardial infarction. Circulation 111:3411–3419

    Article  PubMed  CAS  Google Scholar 

  26. Lehnart SE, Maier LS, Hasenfuss G (2009) Abnormalities of calcium metabolism and myocardial contractility depression in the failing heart. Heart Fail Rev 14:213–224

    Article  PubMed  CAS  Google Scholar 

  27. Miyata S, Minobe W, Bristow MR, Leinwand LA (2000) Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ Res 86:386–390

    Article  PubMed  CAS  Google Scholar 

  28. Ahmet I, Morrell C, Lakatta EG, Talan MI (2009) Therapeutic efficacy of a combination of a beta1-adrenoreceptor (AR) blocker and beta2-AR agonist in a rat model of postmyocardial infarction dilated heart failure exceeds that of a beta1-AR blocker plus angiotensin-converting enzyme inhibitor. J Pharmacol Exp Ther 331:178–185

    Article  PubMed  CAS  Google Scholar 

  29. Mascareno E, Dhar M, Siddiqui MA (1998) Signal transduction and activator of transcription (STAT) protein-dependent activation of angiotensinogen promoter: a cellular signal for hypertrophy in cardiac muscle. Proc Natl Acad Sci U S A 95:5590–5594

    Article  PubMed  CAS  Google Scholar 

  30. Boengler K, Hilfiker-Kleiner D, Drexler H et al (2008) The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Ther 120:172–185

    Article  PubMed  CAS  Google Scholar 

  31. Chen H, Ikeda U, Shimpo M et al (2000) Fluvastatin upregulates inducible nitric oxide synthase expression in cytokine-stimulated vascular smooth muscle cells. Hypertension 36:923–928

    Article  PubMed  CAS  Google Scholar 

  32. Yamamoto E, Kataoka K, Dong YF et al (2009) Aliskiren enhances the protective effects of valsartan against cardiovascular and renal injury in endothelial nitric oxide synthase-deficient mice. Hypertension 54:633–638

    Article  PubMed  CAS  Google Scholar 

  33. Rouet-Benzineb P, Gontero B, Dreyfus P, Lafuma C (2000) Angiotensin II induces nuclear factor- kappa B activation in cultured neonatal rat cardiomyocytes through protein kinase C signaling pathway. J Mol Cell Cardiol 32:1767–1778

    Article  PubMed  CAS  Google Scholar 

  34. Iraqi W, Rossignol P, Angioi M et al (2009) Extracellular cardiac matrix biomarkers in patients with acute myocardial infarction complicated by left ventricular dysfunction and heart failure: insights from the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS) study. Circulation 119:2471–2479

    Article  PubMed  CAS  Google Scholar 

  35. Dickstein K, Cohen-Solal A, Filippatos G et al (2008) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur Heart J 29:2388–2442

    Article  PubMed  CAS  Google Scholar 

  36. Takemoto M, Liao JK (2001) Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Arterioscler Thromb Vasc Biol 21:1712–1719

    Article  PubMed  CAS  Google Scholar 

  37. Takemoto M, Node K, Nakagami H et al (2001) Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. J Clin Invest 108:1429–1437

    PubMed  CAS  Google Scholar 

  38. Dechend R, Fiebeler A, Park JK et al (2001) Amelioration of angiotensin II-induced cardiac injury by a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor. Circulation 104:576–581

    Article  PubMed  CAS  Google Scholar 

  39. Landmesser U, Engberding N, Bahlmann FH et al (2004) Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation 110:1933–1939

    Article  PubMed  CAS  Google Scholar 

  40. Landmesser U, Drexler H (2005) Chronic heart failure: an overview of conventional treatment versus novel approaches. Nat Clin Prac Cardiovasc Med 2:628–638

    Article  CAS  Google Scholar 

  41. Bauersachs J, Galuppo P, Fraccarollo D et al (2001) Improvement of left ventricular remodeling and function by hydroxymethylglutaryl coenzyme a reductase inhibition with cerivastatin in rats with heart failure after myocardial infarction. Circulation 104:982–985

    Article  PubMed  CAS  Google Scholar 

  42. Nahrendorf M, Hu K, Hiller KH et al (2002) Impact of hydroxymethylglutaryl coenzyme a reductase inhibition on left ventricular remodeling after myocardial infarction: an experimental serial cardiac magnetic resonance imaging study. J Am Coll Cardiol 40:1695–1700

    Article  PubMed  CAS  Google Scholar 

  43. Hayashidani S, Tsutsui H, Shiomi T et al (2002) Fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation 105:868–873

    Article  PubMed  CAS  Google Scholar 

  44. Sola S, Mir MQ, Lerakis S et al (2006) Atorvastatin improves left ventricular systolic function and serum markers of inflammation in nonischemic heart failure. J Am Coll Cardiol 47:332–337

    Article  PubMed  CAS  Google Scholar 

  45. Krum H, Ashton E, Reid C et al (2007) Double-blind, randomized, placebo-controlled study of high-dose HMG CoA reductase inhibitor therapy on ventricular remodeling, pro-inflammatory cytokines and neurohormonal parameters in patients with chronic systolic heart failure. J Card Fail 13:1–7

    Article  PubMed  CAS  Google Scholar 

  46. Agullo L, Garcia-Dorado D, Inserte J et al (1999) L-arginine limits myocardial cell death secondary to hypoxia-reoxygenation by a cGMP-dependent mechanism. Am J Physiol 276:H1574–1580

    PubMed  CAS  Google Scholar 

  47. Jones SP, Greer JJ, Kakkar AK et al (2004) Endothelial nitric oxide synthase overexpression attenuates myocardial reperfusion injury. Am J Physiol Heart Circ physiol 286:H276–282

    Article  PubMed  CAS  Google Scholar 

  48. Fraccarollo D, Widder JD, Galuppo P et al (2008) Improvement in left ventricular remodeling by the endothelial nitric oxide synthase enhancer AVE9488 after experimental myocardial infarction. Circulation 118:818–827

    Article  PubMed  CAS  Google Scholar 

  49. Takimoto E, Champion HC, Li M et al (2005) Chronic inhibition of cyclic GMP phosphodiesterase 5 A prevents and reverses cardiac hypertrophy. Nat Med 11:214–222

    Article  PubMed  CAS  Google Scholar 

  50. Engberding N, Spiekermann S, Schaefer A et al (2004) Allopurinol attenuates left ventricular remodeling and dysfunction after experimental myocardial infarction: a new action for an old drug? Circulation 110:2175–2179

    Article  PubMed  CAS  Google Scholar 

  51. Takimoto E, Kass DA (2007) Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 49:241–248

    Article  PubMed  CAS  Google Scholar 

  52. Cingolani HE, Plastino JA, Escudero EM et al (2006) The effect of xanthine oxidase inhibition upon ejection fraction in heart failure patients: La Plata Study. J Card Fail 12:491–498

    Article  PubMed  CAS  Google Scholar 

  53. Hare JM, Mangal B, Brown J et al (2008) Impact of oxypurinol in patients with symptomatic heart failure. Results of the OPT-CHF study. J Am Coll Cardiol 51:2301–2309

    Article  PubMed  CAS  Google Scholar 

  54. Brown EJ Jr, Kloner RA, Schoen FJ et al (1983) Scar thinning due to ibuprofen administration after experimental myocardial infarction. Am J Cardiol 51:877–883

    Article  PubMed  CAS  Google Scholar 

  55. Timmers L, Sluijter JP, Verlaan CW et al (2007) Cyclooxygenase-2 inhibition increases mortality, enhances left ventricular remodeling, and impairs systolic function after myocardial infarction in the pig. Circulation 115:326–332

    Article  PubMed  CAS  Google Scholar 

  56. Frantz S, Bauersachs J, Ertl G (2009) Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc Res 81:474–481

    Article  PubMed  CAS  Google Scholar 

  57. Hofmann U, Beyersdorf N, Weirather J et al (2012) Activation of CD4 + T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation 125:1652–1663

    Article  PubMed  CAS  Google Scholar 

  58. Shishido T, Nozaki N, Yamaguchi S et al (2003) Toll-like receptor-2 modulates ventricular remodeling after myocardial infarction. Circulation 108:2905–2910

    Article  PubMed  CAS  Google Scholar 

  59. Timmers L, Sluijter JP, Keulen JK van et al (2008) Toll-like receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction. Circ Res 102:257–264

    Article  PubMed  CAS  Google Scholar 

  60. Abbate A, Salloum FN, Vecile E et al (2008) Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation 117:2670–2683

    Article  PubMed  CAS  Google Scholar 

  61. Ikonomidis I, Lekakis JP, Nikolaou M et al (2008) Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis. Circulation 117:2662–2669

    Article  PubMed  CAS  Google Scholar 

  62. Spinale FG, Koval CN, Deschamps AM et al (2008) Dynamic changes in matrix metalloprotienase activity within the human myocardial interstitium during myocardial arrest and reperfusion. Circulation 118:16–23

    Article  CAS  Google Scholar 

  63. Hudson MP, Armstrong PW, Ruzyllo W et al (2006) Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction: results of the PREMIER (Prevention of Myocardial Infarction Early Remodeling) trial. J Am Coll Cardiol 48:15–20

    Article  PubMed  CAS  Google Scholar 

  64. Nahrendorf M, Hu K, Frantz S et al (2006) Factor XIII deficiency causes cardiac rupture, impairs wound healing, and aggravates cardiac remodeling in mice with myocardial infarction. Circulation 113:1196–1202

    Article  PubMed  CAS  Google Scholar 

  65. Schachinger V, Erbs S, Elsasser A et al (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355:1210–1221

    Article  PubMed  CAS  Google Scholar 

  66. Schachinger V, Erbs S, Elsasser A et al (2006) Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J 27:2775–2783

    Article  PubMed  Google Scholar 

  67. Dill T, Schachinger V, Rolf A et al (2009) Intracoronary administration of bone marrow-derived progenitor cells improves left ventricular function in patients at risk for adverse remodeling after acute ST-segment elevation myocardial infarction: results of the Reinfusion of Enriched Progenitor cells and Infarct Remodeling in Acute Myocardial Infarction study (REPAIR-AMI) cardiac magnetic resonance imaging substudy. Am Heart J 157:541–547

    Article  PubMed  Google Scholar 

  68. Yousef M, Schannwell CM, Kostering M et al (2009) The BALANCE Study: clinical benefit and long-term outcome after intracoronary autologous bone marrow cell transplantation in patients with acute myocardial infarction. J Am Coll Cardiol 53:2262–2269

    Article  PubMed  Google Scholar 

  69. Zeng L, Hu Q, Wang X et al (2007) Bioenergetic and functional consequences of bone marrow-derived multipotent progenitor cell transplantation in hearts with postinfarction left ventricular remodeling. Circulation 115:1866–1875

    Article  PubMed  Google Scholar 

  70. Kamihata H, Matsubara H, Nishiue T et al (2001) Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 104:1046–1052

    Article  PubMed  CAS  Google Scholar 

  71. Fiedler J, Jazbutyte V, Kirchmaier BC et al (2011) MicroRNA-24 regulates vascularity after myocardial infarction. Circulation 124:720–730

    Article  PubMed  CAS  Google Scholar 

  72. Thum T, Galuppo P, Wolf C et al (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116:258–267

    Article  PubMed  CAS  Google Scholar 

  73. Vahtola E, Storvik M, Louhelainen M et al (2011) Effects of levosimendan on cardiac gene expression profile and post-infarct cardiac remodelling in diabetic Goto-Kakizaki rats. Basic Clin Pharmacol Toxicol 109:387–397

    Article  PubMed  CAS  Google Scholar 

  74. Stellbrink C, Breithardt OA, Franke A et al (2001) Impact of cardiac resynchronization therapy using hemodynamically optimized pacing on left ventricular remodeling in patients with congestive heart failure and ventricular conduction disturbances. J Am Coll Cardiol 38:1957–1965

    Article  PubMed  CAS  Google Scholar 

  75. St John Sutton MG, Plappert T, Abraham WT et al (2003) Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure. Circulation 107:1985–1990

    Article  Google Scholar 

  76. Linde C, Leclercq C, Rex S et al (2002) Long-term benefits of biventricular pacing in congestive heart failure: results from the MUltisite STimulation in cardiomyopathy (MUSTIC) study. J Am Coll Cardiol 40:111–118

    Article  PubMed  Google Scholar 

  77. Young JB, Abraham WT, Smith AL et al (2003) Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: the MIRACLE ICD Trial. JAMA 289:2685–2694

    Article  PubMed  Google Scholar 

  78. Sutton MG, Plappert T, Hilpisch KE et al (2006) Sustained reverse left ventricular structural remodeling with cardiac resynchronization at one year is a function of etiology: quantitative Doppler echocardiographic evidence from the Multicenter InSync Randomized Clinical Evaluation (MIRACLE). Circulation 113:266–272

    Article  PubMed  Google Scholar 

  79. Kanzaki H, Bazaz R, Schwartzman D et al (2004) A mechanism for immediate reduction in mitral regurgitation after cardiac resynchronization therapy: insights from mechanical activation strain mapping. J Am Coll Cardiol 44:1619–1625

    Article  PubMed  Google Scholar 

  80. Abraham WT, Hayes DL (2003) Cardiac resynchronization therapy for heart failure. Circulation 108:2596–2603

    Article  PubMed  Google Scholar 

  81. Yu CM, Chau E, Sanderson JE et al (2002) Tissue Doppler echocardiographic evidence of reverse remodeling and improved synchronicity by simultaneously delaying regional contraction after biventricular pacing therapy in heart failure. Circulation 105:438–445

    Article  PubMed  Google Scholar 

  82. Maybaum S, Mancini D, Xydas S et al (2007) Cardiac improvement during mechanical circulatory support: a prospective multicenter study of the LVAD Working Group. Circulation 115:2497–2505

    Article  PubMed  Google Scholar 

  83. Birks EJ, Tansley PD, Hardy J et al (2006) Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med 355:1873–1884

    Article  PubMed  CAS  Google Scholar 

  84. Li YY, Feng Y, McTiernan CF et al (2001) Downregulation of matrix metalloproteinases and reduction in collagen damage in the failing human heart after support with left ventricular assist devices. Circulation 104:1147–1152

    Article  PubMed  CAS  Google Scholar 

  85. Ogletree-Hughes ML, Stull LB, Sweet WE et al (2001) Mechanical unloading restores beta-adrenergic responsiveness and reverses receptor downregulation in the failing human heart. Circulation 104:881–886

    Article  PubMed  CAS  Google Scholar 

  86. Heerdt PM, Holmes JW, Cai B et al (2000) Chronic unloading by left ventricular assist device reverses contractile dysfunction and alters gene expression in end-stage heart failure. Circulation 102:2713–2719

    Article  PubMed  CAS  Google Scholar 

  87. Baba HA, Stypmann J, Grabellus F et al (2003) Dynamic regulation of MEK/Erks and Akt/GSK-3beta in human end-stage heart failure after left ventricular mechanical support: myocardial mechanotransduction-sensitivity as a possible molecular mechanism. Cardiovasc Res 59:390–399

    Article  PubMed  CAS  Google Scholar 

  88. Bartling B, Milting H, Schumann H et al (1999) Myocardial gene expression of regulators of myocyte apoptosis and myocyte calcium homeostasis during hemodynamic unloading by ventricular assist devices in patients with end-stage heart failure. Circulation 100:II216–223

    Article  PubMed  CAS  Google Scholar 

  89. Wohlschlaeger J, Levkau B, Brockhoff G et al (2010) Hemodynamic support by left ventricular assist devices reduces cardiomyocyte DNA content in the failing human heart. Circulation 121:989–996

    Article  PubMed  CAS  Google Scholar 

  90. Janz KF, Dawson JD, Mahoney LT (2000) Predicting heart growth during puberty: the Muscatine Study. Pediatrics 105:E63

    Article  PubMed  CAS  Google Scholar 

  91. Jensen E, Wood C, Keller-Wood M (2002) The normal increase in adrenal secretion during pregnancy contributes to maternal volume expansion and fetal homeostasis. J Soc Gynecol Investig 9:362–371

    Article  PubMed  CAS  Google Scholar 

  92. Savu O, Jurcut R, Giusca S et al (2012) Morphological and functional adaptation of the maternal heart during pregnancy. Circ Cardiovasc Imaging 5:289–297

    Article  PubMed  Google Scholar 

  93. Maron BJ, Pelliccia A, Spataro A, Granata M (1993) Reduction in left ventricular wall thickness after deconditioning in highly trained Olympic athletes. Br Heart J 69:125–128

    Article  PubMed  CAS  Google Scholar 

  94. Baggish AL, Wang F, Weiner RB et al (2008) Training-specific changes in cardiac structure and function: a prospective and longitudinal assessment of competitive athletes. J Appl Physiol 104:1121–1128

    Article  PubMed  Google Scholar 

  95. Luo H, Wong J, Wong B (2010) Protein degradation systems in viral myocarditis leading to dilated cardiomyopathy. Cardiovasc Res 85:347–356

    Article  PubMed  CAS  Google Scholar 

  96. Capasso JM, Palackal T, Olivetti G, Anversa P (1990) Left ventricular failure induced by long-term hypertension in rats. Circ Res 66:1400–1412

    Article  PubMed  CAS  Google Scholar 

  97. Verdecchia P (2005) Pre-clinical and clinical experience of telmisartan in cardiac remodelling. J Int Med Res 33(Suppl 1):12A–20A

    PubMed  CAS  Google Scholar 

  98. Bonow RO, Dodd JT, Maron BJ et al (1988) Long-term serial changes in left ventricular function and reversal of ventricular dilatation after valve replacement for chronic aortic regurgitation. Circulation 78:1108–1120

    Article  PubMed  CAS  Google Scholar 

  99. Wren C, O’Sullivan JJ (2001) Survival with congenital heart disease and need for follow up in adult life. Heart 85:438–443

    Article  PubMed  CAS  Google Scholar 

  100. Levine JC, Kishnani PS, Chen YT et al (2008) Cardiac remodeling after enzyme replacement therapy with acid alpha-glucosidase for infants with Pompe disease. Pediatr Cardiol 29:1033–1042

    Article  PubMed  Google Scholar 

  101. Doughty RN, Whalley GA, Walsh HA et al (2004) Effects of carvedilol on left ventricular remodeling after acute myocardial infarction: the CAPRICORN Echo Substudy. Circulation 109:201–206

    Article  PubMed  CAS  Google Scholar 

  102. Groenning BA, Nilsson JC, Sondergaard L et al (2000) Antiremodeling effects on the left ventricle during beta-blockade with metoprolol in the treatment of chronic heart failure. J Am Coll Cardiol 36:2072–2080

    Article  PubMed  CAS  Google Scholar 

  103. Pfeffer MA, Braunwald E, Moye LA et al (1992) Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med 327:669–677

    Article  PubMed  CAS  Google Scholar 

  104. Kober L, Torp-Pedersen C, Carlsen JE et al (1995) A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. Trandolapril Cardiac Evaluation (TRACE) Study Group. N Engl J Med 333:1670–1676

    Article  PubMed  CAS  Google Scholar 

  105. Pfeffer MA, McMurray JJ, Velazquez EJ et al (2003) Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med 349:1893–1906

    Article  PubMed  CAS  Google Scholar 

  106. McKelvie RS, Yusuf S, Pericak D et al (1999) Comparison of candesartan, enalapril, and their combination in congestive heart failure: randomized evaluation of strategies for left ventricular dysfunction (RESOLVD) pilot study. The RESOLVD Pilot Study Investigators. Circulation 100:1056–1064

    Article  PubMed  CAS  Google Scholar 

  107. Chan AK, Sanderson JE, Wang T et al (2007) Aldosterone receptor antagonism induces reverse remodeling when added to angiotensin receptor blockade in chronic heart failure. J Am Coll Cardiol 50:591–596

    Article  PubMed  CAS  Google Scholar 

  108. Weir RA, Mark PB, Petrie CJ et al (2009) Left ventricular remodeling after acute myocardial infarction: does eplerenone have an effect? Am Heart J 157:1088–1096

    Article  PubMed  Google Scholar 

  109. Kjekshus J, Apetrei E, Barrios V et al (2007) Rosuvastatin in older patients with systolic heart failure. N Engl J Med 357:2248–2261

    Article  PubMed  CAS  Google Scholar 

  110. Tavazzi L, Maggioni AP, Marchioli R et al (2008) Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet 372:1231–1239

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states the following: there are no conflicts of interest, including specific financial interests and relationships relevant to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ertl MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenner, S., Ertl, G. Remodelling and adverse remodelling in CAD. Herz 37, 590–597 (2012). https://doi.org/10.1007/s00059-012-3660-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-012-3660-7

Keywords

Schlüsselwörter

Navigation