Skip to main content
Log in

Quantitative light-induced fluorescence images and digital photographs - Reproducibility of manually marked demineralisations

Bildgebung mit quantitativer lichtinduzierter Fluoreszenz und digitalen Aufnahmen - Reproduzierbarkeit manueller Demineralisationsmarkierungen

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objective

Hard tooth tissue demineralisation is an undesirable side effect of orthodontic treatment with fixed appliances. Whereas both clinically and in digital photographs (DP), demineralisations appear as white spot lesions, WSLs appear as dark areas when quantitative light-induced fluorescence (QLF) imaging is used. This study aims at comparing the reproducibility of the detection of decalcified tooth areas in DP and QLF.

Materials and methods

DP and QLF pairs were acquired from 139 teeth of 32 patients after braces removal. Three raters manually marked the decalcified area on both DP and QLF images. The markings were repeated after 2 weeks. A ground truth was estimated for each tooth and modality using the simultaneous truth and performance level estimation (STAPLE) algorithm. The Dice coefficients (DC) of each rater marking to the ground truth were calculated for all teeth and modalities to quantify the spatial agreement. A three-way repeated measures analysis of variance (ANOVA) was used to compare the means of the DCs for both modalities (\( p\; < \;0.05 \)). Intra-observer and intercycle variabilities were assessed comparing the means across the raters and the cycles for both modalities.

Results

ANOVA revealed a statistical significant difference between the modalities [\( F (1, 138)\; = \; 62.89 \), \( p \; < \; 0.001 \)]. The standard deviation of the DC for the photographs are lower than those for the QLF images. Intra-observer and intercycle differences are rather small as compared to the intermodality differences.

Conclusions

The results indicate a higher spatial reproducibility in identifying a decalcified area on a tooth surface using visual inspection of DP rather than QLF images.

Zusammenfassung

Ziel

Zahnhartsubstanzschäden in Form von Demineralisationen (WSLs) gelten als unerwünschte Nebenwirkung der kieferorthopädischen Behandlung mit festsitzenden Apparaturen. Sowohl klinisch als auch in digitalen Fotografien (DF) stellen sich WSLs als weißlich-opake, bei der QLF-Diagnostik als dunkle Bereiche dar. Ziel der vorliegenden Studie ist es, die Reproduzierbarkeit von Demineralisationsmarkierungen auf Basis der DF- und QLF-Bildgebung zu vergleichen.

Material und Methoden

DP- und QLF-Aufnahmen wurden von 139 Zähnen bei 32 Patienten nach Entfernung einer festsitzenden Apparatur erstellt. Drei Untersucher markierten manuell die Demineralisationen in beiden Modalitäten. Die Markierungen wurden 14 Tage später wiederholt. Für jeden Zahn und jede Modalität wurde mithilfe des STAPLE (Simultaneous Truth and Performance Level Estimation)-Algorithmus eine Ground Truth ermittelt. Die örtliche Übereinstimmung der Untersuchermarkierungen zur Ground Truth wurde mit dem Dice-Koeffizient (DC) berechnet. Mittels mehrfaktorieller Varianzanalyse (ANOVA) wurden die Mittelwerte der DC-Werte für beide Modalitäten verglichen (p < 0,05). Die Intra-Untersucher- und die Inter-Zyklus-Variabilität wurden durch Vergleich der DC-Mittelwerte und Varianzen bewertet.

Ergebnisse

ANOVA zeigte einen statistisch signifikanten Unterschied zwischen den Modalitäten [F (1; 138) = 62,89, p < 0,001]. Die Standardabweichung des DC war bei den digitalen Bildern geringer als bei der QLF-Bildgebung. Die Unterschiede zwischen den Untersuchern und den Zyklen waren vergleichsweise gering.

Schlussfolgerung

Die Ergebnisse zeigen eine größere örtliche Reproduzierbarkeit der Demineralisationsmarkierung auf vestibulären Glattflächen auf den Fotographien als auf korrespondierenden QLF-Aufnahmen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akhondi-Asl A, Warfield SK (2012) Estimation of the prior distribution of ground truth in the STAPLE algorithm: an empirical Bayesan approach. Med Image Comput Comput Assist Interv 15:593–600

    PubMed  PubMed Central  Google Scholar 

  2. Alammari MR, Smith PW, de Josselin de Jong E, Higham SM (2003) Quantitative light-induced fluorescence (QLF): a tool for early occlusal dental caries detection and support decision making in vivo. J Dent 41:127–132

    Article  Google Scholar 

  3. Angmar-Månsson B, Al-Khateeb S, Tranaeus S (1996) Monitoring the caries process. Optical methods for clinical diagnosis and quantification of enamel caries. Eur J Oral Sci 104(4):480–485

    Article  PubMed  Google Scholar 

  4. Benson P, Pender N, Higham S, Edgar WM (1998) Morphometric assessment of enamel demineralisation from photographs. J Dent 26(8):669–677

    Article  PubMed  Google Scholar 

  5. Benson P, Pender N, Higham S (2000) Enamel demineralisation assessed by computerised image analysis of clinical photographs. J Dent 28(5):319–326

    Article  PubMed  Google Scholar 

  6. Benson P, Pender N, Higham S (2003) Quantifying enamel demineralization from teeth with orthodontic brackets—a comparison of two methods. Part 1: repeatability and agreement. Eur J Orthod 25(2):149–158

    Article  PubMed  Google Scholar 

  7. Cardoso JR, Pereira LM, Iversen MD, Ramos AL (2014) What is gold standard and what is ground truth? Dental Press J Orthod 19(5):27–30

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cochrane NJ, Walker GD, Manton DJ, Reynolds EC (2012) Comparison of quantitative light-induced fluorescence, digital photography and transverse microradiography for quantification of enamel remineralization. Aust Dent J 57(3):271–276

    Article  PubMed  Google Scholar 

  9. Dewalle-Vignion AS, Betrouni N, Baillet C, Vermandel M (2015) Is STAPLE algorithm confident to assess segmentation methods in PET imaging? Phys Med Biol 60(24):9473–9491

    Article  PubMed  Google Scholar 

  10. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302. http://www.jstor.org/stable/1932409

  11. Enaia M, Bock N, Ruf S (2011) White-spot lesions during multibracket appliance treatment: a challenge for clinical excellence. Am J Orthod Dentofac Orthop 140(1):e17–e24

    Article  Google Scholar 

  12. Ferreira Zandoná A, Santiago E, Eckert G, Fontana M, Ando M, Zero DT (2010) Use of ICDAS combined with quantitative light-induced fluorescence as a caries detection method. Caries Res 44(3):317–322

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gmur R, Giertsen E, van der Veen M, de Josselin de Jong E, ten Cate J, Guggenheim B (2006) In vitro quantitative light-induced fluorescence to measure changes in enamel mineralization. Clin Oral Investig 10(3):187–195

    Article  PubMed  Google Scholar 

  14. Gomez J (2015) Detection and diagnosis of the early caries lesion. BMC Oral Health 15(Suppl 1):S3

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gordon S, Lotenberg S, Long R, Antani S, Jeronimo J, Greenspan H (2009) Evaluation of uterine cervix segmentations using ground truth from multiple experts. Comput Med Imaging Graph 33(3):205–216

    Article  PubMed  Google Scholar 

  16. Gorelick L, Geiger A, Gwinnett A (1982) Incidence of white spot formation after bonding and banding. Am J Orthod 81(2):93–98

    Article  PubMed  Google Scholar 

  17. Heinrich-Weltzien R, Kühnisch J, van der Veen M, de Josselin de Jong E, Stösser L (2003) Quantitative light-induced fluorescence (QLF)—a potential method for the dental practitioner. Quintessence Int 34(3):181–188

    PubMed  Google Scholar 

  18. Heinrich-Weltzien R, Kühnisch J, Ifland A, Tranaeus S, Angmar-Månsson B, Stösser L (2005) Detection of initial caries lesions on smooth surfaces by quantitative light-induced fluorescence and visual examination: an in vivo comparison. Eur J Oral Sci 113(6):494–498

    Article  PubMed  Google Scholar 

  19. Klukowska M, Bader A, Erbe C, Bellamy P, White DJ, Anastasia MK, Wehrbein H (2011) Plaque levels of patients with fixed orthodontic appliances measured by digital plaque image analysis. Am J Orthod Dentofac Orthop 139(5):e463–e470

    Article  Google Scholar 

  20. Knösel M, Attin R, Becker K, Attin T (2007) External bleaching effect on the color and luminosity of inactive white-spot lesions after orthodontic appliances. Angle Orthod 77(4):646–652

    Article  PubMed  Google Scholar 

  21. Kühnisch J, Heinrich-Weltzien R (2004) Quantitative light-induced fluorescence (QLF)—a literature review. Int J Comput Dent 7(4):325–338

    PubMed  Google Scholar 

  22. McGraw KO, Wong SP (1996) Forming inferences about some intraclass correlation coefficients. Psychol Methods 1:30–46

    Article  Google Scholar 

  23. Mizrahi E (1982) Enamel demineralization following orthodontic treatment. Am J Orthod 82(1):62–67

    Article  PubMed  Google Scholar 

  24. Ousehal L, Lazrak L, Es-Said R, Hamdoune H, Elquars F, Khadija A (2011) Evaluation of dental plaque control in patients wearing fixed orthodontic appliances: a clinical study. Int Orthod 9(1):140–155

    PubMed  Google Scholar 

  25. Palamara J, Phakey P, Rachinger W, Orams H (1986) Ultrastructure of the intact surface zone of white spot and brown spot carious lesions in human enamel. J Oral Pathol 15(1):28–35

    Article  PubMed  Google Scholar 

  26. Pretty IA, Hall AF, Smith PW, Edgar WM, Higham SM (2002) The intra- and inter-examiner reliability of quantitative light-induced fluorescence (QLF) analyses. Br Dent J 193(2):105–109

    Article  PubMed  Google Scholar 

  27. Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 36:420–428

    Article  Google Scholar 

  28. Tranaeus S, Shi XQ, Lindgren LE, Trollas K, Angmar-Månsson B (2002) In vivo repeatability and reproducibility of the quantitative light-induced fluorescence method. Caries Res 36(1):3–9

    Article  PubMed  Google Scholar 

  29. Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23(7):903–921

    Article  PubMed  PubMed Central  Google Scholar 

  30. Weir JP (2005) Quantifying test–retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res 19(1):231–240

    PubMed  Google Scholar 

  31. Willmot DR, Benson PE, Pender N, Brook AH (2000) Reproducibility of quantitative measurement of white enamel demineralisation by image analysis. Caries Res 34(2):175–181

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Andras Keszei, Uniklinik RWTH Aachen, Germany, for his guidance in the statistical analysis. The authors at AICES RWTH Aachen University were funded in part by the Excellence Initiative of the German Federal and State Governments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalia Tatano.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Informed consent

Informed consent was obtained from all individuals participating in the trial.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatano, R., Ehrlich, E.E., Berkels, . et al. Quantitative light-induced fluorescence images and digital photographs - Reproducibility of manually marked demineralisations. J Orofac Orthop 78, 137–143 (2017). https://doi.org/10.1007/s00056-016-0069-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-016-0069-6

Keywords

Schlüsselwörter

Navigation