Skip to main content
Log in

Study of force loss due to friction comparing two ceramic brackets during sliding tooth movement

Vergleichende Studie zum reibungsbedingten Kraftverlust während der bogengeführten Zahnbewegung durch zwei Keramikbrackets

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objective

To compare the percentage of force loss generated during canine sliding movements in newly introduced ceramic brackets with metal brackets.

Materials and methods

Two types of ceramic brackets, namely polycrystalline alumina (PCA) ceramic brackets (Clarity Advanced) and monocrystalline alumina (MCA) ceramic brackets (Inspire Ice) were compared with stainless steel (SS) brackets (Victory Series). All bracket groups (n = 5 each) were for the maxillary canines and had a 0.018-inch slot size. The brackets were mounted on an Orthodontic Measurement and Simulation System (OMSS) to simulate the canine retraction movement into the first premolar extraction space. Using elastic ligatures, 0.016 × 0.022″ (0.40 × 0.56 mm) stainless steel archwires were ligated onto the brackets. Retraction force was applied via a nickel–titanium coil spring with a nearly constant force of approximately 1 N. The OMSS measured the percentage of force loss over the retraction path by referring to the difference between the applied retraction force and actual force acting on each bracket. Between group comparisons were done with one-way analysis of variance.

Results

The metal brackets revealed the lowest percentage of force loss due to friction, followed by the PCA and MCA ceramic bracket groups (67 ± 4, 68 ± 7, and 76 ± 3 %, respectively). There was no significant difference between SS and PCA brackets (p = 0.97), but we did observe significant differences between metal and MCA brackets (p = 0.03) and between PCA and MCA ceramic brackets (p = 0.04).

Conclusion

PCA ceramic brackets, whose slot surface is covered with an yttria-stabilized zirconia-based coating exhibited frictional properties similar to those of metal brackets. Frictional resistance resulted in an over 60 % loss of the applied force due to the use of elastic ligatures.

Zusammenfassung

Ziele

Vergleich des Kraftverlusts durch Reibung bei der bogengeführten Zahnbewegung unter Einsatz zweier neuentwickelter Keramikbrackets mit einem Metallbracket.

Material und Methoden

Zwei Arten von Keramikbrackets, ein polykristallines Aluminiumoxid- (PCA, Clarity Advanced) und ein monokristallines Aluminiumoxid-Keramikbracket (MCA, Inspire Ice), wurden untersucht und mit einem Stahlbracket (Victory Series) verglichen. Alle getesteten Brackets (je n = 5) waren Oberkiefereckzahnbrackets mit einer Slotweite von 0,46 mm (0.018″). Die Brackets wurden im orthodontischen Mess- und Simulations-System (OMSS) montiert, um eine Eckzahnretraktion in die Extraktionslücke des ersten Prämolaren zu simulieren. Die Führung erfolgte an einem Stahlbogen der Dimension 0.40 × 0.56 mm (0.016″ × 0.022″), der mittels Elastics in den Brackets ligiert wurde. Die Retraktionskraft wurde über eine Nickel-Titan-Zugfeder auf den Zahn aufgebracht, die eine nahezu konstante Kraft von 1 N erzeugte. Mit dem OMSS wurde der prozentuale Kraftverlust über die Retraktionsstrecke aus der Differenz von eingesetzter Retraktionskraft und am Bracket aktiver Kraft ermittelt. Der Gruppenvergleich erfolgte über eine einfaktorielle Varianzanalyse (ANOVA).

Ergebnisse

Der prozentuale Kraftverlust durch Friktion war bei den Metallbrackets am geringsten, gefolgt von den PCA- und den MCA-Keramikbrackets (67 ± 4, 68 ± 7 und 76 ± 3 %). Zwischen Stahl- und PCA-Brackets bestand kein signifikanter Unterschied (p = 0.97). Die Unterschiede zwischen Stahl- und MCA-Brackets (p = 0.03) dagegen sowie zwischen PCA- und MCA-Keramikbrackets (p = 0.04) erwiesen sich als signifikant.

Schlussfolgerungen

PCA-Keramikbrackets mit einer Slotbeschichtung aus Yttriumoxid-stabilisierter Zirkondioxidkeramik zeigten vergleichbare Reibungsverluste wie Stahlbrackets. Insgesamt betrug der Reibungsverlust mehr als 60 % der eingesetzten Kraft, was aus dem Einsatz elastischer Ligaturen resultierte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bazakidou E, Nanda RS, Duncanson MG et al (1997) Evaluation of frictional resistance in esthetic brackets. Am J Orthod Dentofac Orthop 112:138–144

    Article  Google Scholar 

  2. Bourauel C, Drescher D, Thier M (1992) An experimental apparatus for the simulation of three-dimensional movements in orthodontics. J Biomed Eng 14:371–378

    Article  PubMed  Google Scholar 

  3. Burrow SJ (2009) Friction and resistance to sliding in orthodontics: a critical review. Am J Orthod Dentofac Orthop 135:442–447

    Article  Google Scholar 

  4. Cha JY, Kim KS, Hwang CJ (2007) Friction of conventional and silica-insert ceramic brackets in various bracket-wire combinations. Angle Orthod 77:100–107

    Article  PubMed  Google Scholar 

  5. Chang CJ, Lee TM, Liu JK (2013) Effect of bracket bevel design and oral environmental factors on frictional resistance. Angle Orthod 83:956–965

    Article  PubMed  Google Scholar 

  6. Choi SH, Kang DY, Hwang CJ (2014) Surface roughness of three types of modern plastic bracket slot floors and frictional resistance. Angle Orthod 84:177–183

    Article  PubMed  Google Scholar 

  7. Doshi UH, Bhad-Patil WA (2011) Static frictional force and surface roughness of various bracket and wire combinations. Am J Orthod Dentofac Orthop 139:74–79

    Article  Google Scholar 

  8. Drescher D, Bourauel C, Schumacher HA (1989) Frictional forces between bracket and arch wire. Am J Orthod Dentofac Orthop 96:397–404

    Article  Google Scholar 

  9. Drescher D, Bourauel C, Thier M (1991) Application of the orthodontic measurement and simulation system (OMSS) in orthodontics. Eur J Orthod 13:169–178

    Article  PubMed  Google Scholar 

  10. Iwasaki LR, Beatty MW, Nickel JC (2003) Friction and orthodontic mechanics: clinical studies of moment and ligation effects. Semin Orthod 9:290–297

    Article  Google Scholar 

  11. Kusy RP, Whitley JQ, Prewitt MJ (1991) Comparison of the frictional coefficients for selected archwire-bracket slot combinations in the dry and wet states. Angle Orthod 61:293–302

    PubMed  Google Scholar 

  12. Kusy RP, Keith O, Whitley JQ et al (1993) Coefficient of Friction characterization of surface-modified polycrystalline alumina. J Am Ceram Soc 76:336–342

    Article  Google Scholar 

  13. Kusy RP, Whitley JQ (1997) Friction between different wire-bracket configurations and materials. Semin Orthod 3:166–177

    Article  PubMed  Google Scholar 

  14. Montasser MA, El-Bialy T, Keilig L et al (2014) Force loss in archwire-guided tooth movement of conventional and self-ligating brackets. Eur J Orthod 36:31–38

    Article  PubMed  Google Scholar 

  15. Nishio C, Da Motta AF, Elias CN et al (2004) In vitro evaluation of frictional forces between archwires and ceramic brackets. Am J Orthod Dentofac Orthop 125:56–64

    Article  Google Scholar 

  16. Pimentel RF, de Oliveira RSMF, Chaves MDGAM et al (2013) Evaluation of the friction force generated by monocristalyne and policristalyne ceramic brackets in sliding mechanics. Dental Press J Orthod 18:121–127

    Article  PubMed  Google Scholar 

  17. Pliska BT, Fuchs RW, Beyer JP et al (2014) Effect of applied moment on resistance to sliding among esthetic self-ligating brackets. Angle Orthod 84:134–139

    Article  PubMed  Google Scholar 

  18. Proffit WR, Fields HW, Sarver DM (2006) Contemporary orthodontics. Mosby Elsevier, St. Louis

    Google Scholar 

  19. Rossouw PE (2003) Friction: an overview. Semin Orthod 9:218–222

    Article  Google Scholar 

  20. Russell JS (2005) Aesthetic orthodontic brackets. J Orthod 32:146–163

    Article  PubMed  Google Scholar 

  21. Saunders CR, Kusy RP (1994) Surface topography and frictional characteristics of ceramic brackets. Am J Orthod Dentofac Orthop 106:76–87

    Article  Google Scholar 

  22. Schumacher HA, Bourauel C, Drescher D (1999) The influence of bracket design on frictional losses in the bracket/arch wire system. J Orofac Orthop 60:335–347

    Article  PubMed  Google Scholar 

  23. Theiss S, Wyllie WE, Morris GP (2011) Low friction coatings on ceramics for application in orthodontic brackets. IADR Abstracts

  24. Thorstenson G, Kusy R (2003) Influence of stainless steel inserts on the resistance to sliding of esthetic brackets with second-order angulation in the dry and wet states. Angle Orthod 73:167–175

    PubMed  Google Scholar 

  25. Voevodin A, Hu J, Fitz T (2001) Tribological properties of adaptive nanocomposite coatings made of yttria stabilized zirconia and gold. Surf Coat Technol 146–147:351–356

    Article  Google Scholar 

  26. Williams CL, Khalaf K (2013) Frictional resistance of three types of ceramic brackets. J Oral Maxillofac Res 4:1–7

    Google Scholar 

  27. Zinelis S, Eliades T, Eliades G et al (2005) Comparative assessment of the roughness, hardness, and wear resistance of aesthetic bracket materials. Dent Mater 21:890–894

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by King Abdulaziz City for Science and Technology [PS-34-216].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Bourauel.

Ethics declarations

The accompanying manuscript does not include studies on humans or animals.

Conflict of interest

M. AlSubaie, N. Talic, S. Khawatmi, A. Alobeid, C. Bourauel, and T. El-Bialy state that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlSubaie, M., Talic, N., Khawatmi, S. et al. Study of force loss due to friction comparing two ceramic brackets during sliding tooth movement. J Orofac Orthop 77, 334–340 (2016). https://doi.org/10.1007/s00056-016-0038-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-016-0038-0

Keywords

Schlüsselwörter

Navigation