Skip to main content
Log in

In vitro studies on the cytotoxic potential of surface sealants

In-vitro-Untersuchungen zum zytotoxischen Potenzial von Versiegelungsmaterialien für Glattflächen

  • Original article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objective

The objective of this in vitro study was an initial screening of the cytotoxic potential of widely used smooth enamel surface sealants.

Materials and methods

A total of 20 products were allocated to four groups based on their chemical composition: (1) filled resin-based sealants, (2) unfilled resin-based sealants, (3) a resin-modified, glass ionomer-based sealant, and (4) silicone-based sealants. All materials were applied to human enamel slices both in accordance with manufacturers’ instructions and in additional experiments applying 50 % undercuring and 50 % overcuring. An agar overlay assay was then used to test the specimens following ISO 10933. The cytotoxic potential of each material was interpreted based on a reaction index that summarized the decolorization and lysis scores obtained.

Results

The cytotoxic potential decreased as follows: unfilled resin-based sealants > filled resin-based sealants > resin-modified, glass ionomer-based sealant > silicone-based sealants. In 75 % of the resin-based products, deliberate undercuring was associated with more extensive decolorization zones, leading to higher rates of cytotoxic potential in two of those products. Overcuring, by contrast, was associated with a tendency for smaller decolorization zones in 50 % of the resin-based products.

Conclusion

Surface sealants derived from resin monomers exhibited cytotoxic potential in the agar overlay assay. There is also evidence of a possible association with curing, as undercuring can increase the cytotoxic potential, whereas normal curing (as per manufacturers’ instructions) or overcuring may help minimize such effects. More research into the biological implications of these materials is needed, especially with regard to their potential impact on the adjacent gingiva.

Zusammenfassung

Ziel

Ziel dieser In-vitro-Studie war, das zytotoxische Potenzial gängiger Versiegelungsmaterialien für Glattflächen im Sinne eines „initialen Screenings“ zu untersuchen.

Material und Methodik

Insgesamt 20 Produkte wurden nach ihren chemischen Eigenschaften in 4 Gruppen eingeteilt: 1) kompositbasiert, gefüllt; 2) kompositbasiert, ungefüllt, 3) kunststoffmodifiziert glasionomerbasiert und 4) silikonbasiert. Die Materialien wurden gemäß Herstellerangaben sowie mit 50 % verkürzter und verlängerter Polymerisations- bzw. Trocknungszeit auf humane Schmelzscheiben aufgetragen und im Agar-Overlay-Assay in Anlehnung an ISO 10933 getestet. Für die Interpretation wurden Reaktionsindizes auf der Basis von Entfärbungs- und Lyseindizes erstellt.

Ergebnisse

Das zytotoxische Potenzial nahm in der folgenden Reihenfolge der Untersuchungsgruppen ab: kompositbasiert, ungefüllt > kompositbasiert, gefüllt > kunststoffmodifiziert glasionomerbasiert > silikonbasiert. Bei verkürzter Polymerisationszeit zeigten 75 % der kompositbasierten Produkte erhöhte Entfärbungszonen; bei 2 Produkten war dies mit einer erhöhten Einstufung des zytotoxischen Potenzials verbunden. Bei entsprechender Verlängerung der Polymerisationszeit konnte bei 50 % der kompositbasierten Produkte eine tendenzielle Reduzierung der Entfärbungszonen beobachtet werden.

Schlussfolgerungen

Versiegelungsmaterialien für Glattflächen auf Basis von Kunststoffmonomeren weisen im Agar-Overlay-Assay zytotoxisches Potenzial auf. Ferner zeichnet sich ein möglicher Zusammenhang zwischen Polymerisationszeit und zytotoxischem Potenzial ab. Reduzierte Polymerisationszeiten können das zytotoxische Potenzial erhöhen. Umgekehrt kann die Einhaltung bzw. Verlängerung der Polymerisationszeiten helfen, das zytotoxische Potenzial zu reduzieren. Weitere Studien, insbesondere zur möglichen Beeinflussung der benachbarten Gingiva, sind notwendig, um die biologischen Effekte dieser Materialien weiter bewerten zu können.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

bis-GMA:

bisphenol-A diglycidyl dimethacrylate

HEMA:

hydroxyethyl methacrylate

HPLC:

high performance liquid chromatography

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazoliumbromide

TEGDMA:

triethylene glycol dimethacrylate

UDMA:

urethane dimethacrylate

References

  1. Aranha AM, Giro EM, Hebling J et al (2010) Effects of light-curing time on the cytotoxicity of a restorative composite resin on odontoblast-like cells. J Appl Oral Sci 18:461–466

    Article  PubMed Central  PubMed  Google Scholar 

  2. Van Bebber L, Campbell PM, Honeyman AL et al (2011) Does the amount of filler content in sealants used to prevent decalcification on smooth enamel surfaces really matter? Angle Orthod 81:134–140

    Article  Google Scholar 

  3. Bechtold TE, Sobiegalla A, Markovic M et al (2013) In vivo effectiveness of enamel sealants around orthodontic brackets. J Orofac Orthop 74(6):447–457. doi:10.1007/s00056-013-0178-4

    Article  PubMed  Google Scholar 

  4. Benham AW, Campbell PM, Buschang PH (2009) Effectiveness of pit and fissure sealants in reducing white spot lesions during orthodontic treatment. A pilot study. Angle Orthod 79:338–345

    Article  PubMed  Google Scholar 

  5. Bruinink A, Luginbuehl R (2012) Evaluation of biocompatibility using in vitro methods: interpretation and limitations. Adv Biochem Eng Biotechnol 126:117–152

    PubMed  Google Scholar 

  6. Buren JL, Staley RN, Wefel J, Qian F (2008) Inhibition of enamel demineralization by an enamel sealant, Pro Seal: an in-vitro study. Am J Orthod Dentofacial Orthop 133:88–94

    Article  Google Scholar 

  7. Caughman WF, Caughman GB, Shiflett RA et al (1991) Correlation of cytotoxicity, filler loading and curing time of dental composites. Biomaterials 12:737–740

    Article  PubMed  Google Scholar 

  8. Chapman JA, Roberts WE, Eckert GJ et al (2010) Risk factors for incidence and severity of white spot lesions during treatment with fixed orthodontic appliances. Am J Orthod Dentofacial Orthop 138:188–194

    Article  PubMed  Google Scholar 

  9. Souza Costa CA de, Hebling J, Hanks CT (2003) Effects of light-curing time on the cytotoxicity of a restorative resin composite applied to an immortalized odontoblast-cell line. Oper Dent 28:365–370

    Google Scholar 

  10. Durner J, Debiak M, Burkle A et al (2010) Induction of DNA strand breaks by dental composite components compared to X-ray exposure in human gingival fibroblasts. Arch Toxicol 85:143–148

    Article  PubMed  Google Scholar 

  11. Durner J, Spahl W, Zaspel J et al (2010) Eluted substances from unpolymerized and polymerized dental restorative materials and their Nernst partition coefficient. Dent Mater 26:91–99

    Article  PubMed  Google Scholar 

  12. Erbe C, Alhafne A, Jahn A, Wehrbein H (2013) Glattflächenversiegler in der kieferorthopädischen Praxis – eine Umfrage zu Häufigkeiten, Anwendung und Kontrolle. 86. Wissenschaftliche Jahrestagung der deutschen Gesellschaft für Kieferorthopädie. Abstractband: 91 (P 40)

  13. Feng L, Carvalho R, Suh BI (2009) Insufficient cure under the condition of high irradiance and short irradiation time. Dent Mater 25:283–289

    Article  PubMed  Google Scholar 

  14. Ferracane JL (1994) Elution of leachable components from composites. J Oral Rehabil 21:441–452

    Article  PubMed  Google Scholar 

  15. Ferracane JL, Mitchem JC, Condon JR, Todd R (1997) Wear and marginal breakdown of composites with various degrees of cure. J Dent Res 76:1508–1516

    Article  PubMed  Google Scholar 

  16. Ferracane JL (2010) Resin composite-state of the art. Dent Mater 27:29–38

    Article  PubMed  Google Scholar 

  17. Finer Y, Santerre JP (2007) Influence of silanated filler content on the biodegradation of bisGMA/TEGDMA dental composite resins. J Biomed Mater Res A 81:75–84

    Article  PubMed  Google Scholar 

  18. Geurtsen W, Lehmann F, Spahl W, Leyhausen G (1998) Cytotoxicity of 35 dental resin composite monomers/additives in permanent 3T3 and three human primary fibroblast cultures. J Biomed Mater Res 41:474–480

    Article  PubMed  Google Scholar 

  19. Geurtsen W, Spahl W, Leyhausen G (1999) Variability of cytotoxicity and leaching of substances from four light-curing pit and fissure sealants. J Biomed Mater Res 44:73–77

    Article  PubMed  Google Scholar 

  20. Geurtsen W (2000) Biocompatibility of resin-modified filling materials. Crit Rev Oral Biol Med 11:333–355

    Article  PubMed  Google Scholar 

  21. Heinig N, Hartmann A (2008) Efficacy of a sealant: study on the efficacy of a sealant (Light Bond) in preventing decalcification during multibracket therapy. J Orofac Orthop 69:154–167

    Article  PubMed  Google Scholar 

  22. Hu W, Featherstone JD (2005) Prevention of enamel demineralization: an in-vitro study using light-cured filled sealant. Am J Orthod Dentofacial Orthop 128:592–600

    Article  PubMed  Google Scholar 

  23. Julien KC, Buschang PH, Campbell PM (2013) Prevalence of white spot lesion formation during orthodontic treatment. Angle Orthod 83:641–647

    Article  PubMed  Google Scholar 

  24. Korbmacher-Steiner HM, Schilling AF, Huck LG et al (2012) Laboratory evaluation of toothbrush/toothpaste abrasion resistance after smooth enamel surface sealing. Clin Oral Investig 17:765–774

    Article  PubMed  Google Scholar 

  25. Leizer C, Weinstein M, Borislow AJ, Braitman LE (2010) Efficacy of a filled-resin sealant in preventing decalcification during orthodontic treatment. Am J Orthod Dentofacial Orthop 137:796–800

    Article  PubMed  Google Scholar 

  26. Moharamzadeh K, Brook IM, Van Noort R (2009) Biocompatibility of resin-based dental materials. Materials 2:514–548

    Article  Google Scholar 

  27. Olea N, Pulgar R, Perez P et al (1996) Estrogenicity of resin-based composites and sealants used in dentistry. Environ Health Perspect 104:298–305

    Article  PubMed Central  PubMed  Google Scholar 

  28. O’Reilly MT, De Jesús Viñas J, Hatch JP (2013) Effectiveness of a sealant compared with no sealant in preventing enamel demineralization in patients with fixed orthodontic appliances: a prospective clinical trial. Am J Orthod Dentofacial Orthop 143:837–844

    Article  Google Scholar 

  29. Peutzfeldt A (1997) Resin composites in dentistry: the monomer systems. Eur J Oral Sci 105:97–116

    Article  PubMed  Google Scholar 

  30. Rasband WS (1997–2008) ImageJ. U. S. National Institutes of Health. Bethesda, Maryland, USA. http://rsb.info.nih.gov/ij/

  31. Reichl FX, Durner J, Hickel R et al (2002) Uptake, clearance and metabolism of TEGDMA in guinea pigs. Dent Mater 18:581–589

    Article  PubMed  Google Scholar 

  32. Schmalz G (1988) Agar overlay method. Int Endod J 21:59–66

    Article  PubMed  Google Scholar 

  33. Schmalz G, Arenholt-Bindslev D (2009) Basic aspects. In: Schmalz G, Arenholt-Bindslev D (eds) Biocompatibility of dental materials. Springer, Berlin Heiedelberg New York Tokyo, pp 1–12

  34. Schmidlin PR, Sener B, Attin T, Wiegand A (2012) Protection of sound enamel and artificial enamel lesions against demineralisation: caries infiltrant versus adhesive. J Dent 40:851–856

    Article  PubMed  Google Scholar 

  35. Schweikl H, Schmalz G (1999) Triethylene glycol dimethacrylate induces large deletions in the hprt gene of V79 cells. Mutat Res 438:71–78

    Article  PubMed  Google Scholar 

  36. Shellis RP (1978) A synthetic saliva for cultural studies of dental plaque. Arch Oral Biol 23:485–489

    Article  PubMed  Google Scholar 

  37. Sideridou I, Tserki V, Papanastasiou G (2002) Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials 23:1819–1829

    Article  PubMed  Google Scholar 

  38. Spahl W, Budzikiewicz H, Geurtsen W (1998) Determination of leachable components from four commercial dental composites by gas and liquid chromatography/mass spectrometry. J Dent 26:137–145

    Article  PubMed  Google Scholar 

  39. Van Landuyt KL, Nawrot T, Geebelen B et al (2011) How much do resin-based dental materials release? A meta-analytical approach. Dent Mater 27:723–747

    Article  Google Scholar 

  40. Wataha JC, Lockwood PE, Bouillaguet S, Noda M (2003) In vitro biological response to core and flowable dental restorative materials. Dent Mater 19:25–31

    Article  PubMed  Google Scholar 

  41. Wegehaupt FJ, Taubock TT, Sener B, Attin T (2012) Long-term protective effect of surface sealants against erosive wear by intrinsic and extrinsic acids. J Dent 40:416–422

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the German Orthodontic Society (Deutsche Gesellschaft für Kieferorthopädie) for providing financial support for this project.

Compliance with ethical guidelines

Conflict of interest. S. Zingler, B. Matthei, A. Kohl, D. Saure,B. Ludwig, K. Diercke, C.J. Lux, and R. Erber state that there are no conflicts of interest. The accompanying manuscript does not include studies on humans or animals.

Danksagung

Die Autoren danken der Deutschen Gesellschaft für Kieferorthopädie (DGKFO) für die finanzielle Unterstützung des Projektes aus dem Wissenschaftsfond.

Einhaltung ethischer Richtlinien

Interessenkonflikt. S. Zingler, B. Matthei, A. Kohl, D. Saure,B. Ludwig, K. Diercke, C.J. Lux, R. Erber geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zingler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zingler, S., Matthei, B., Kohl, A. et al. In vitro studies on the cytotoxic potential of surface sealants. J Orofac Orthop 76, 66–78 (2015). https://doi.org/10.1007/s00056-014-0269-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-014-0269-x

Keywords

Schlüsselwörter

Navigation