Skip to main content
Log in

Accuracy of torque-limiting devices for mini-implant removal: an in vitro study

Genauigkeit drehmomentlimitierender Instrumente bei Entfernung von Mini-Implantaten – Eine In-vitro-Studie

  • Original article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Introduction

Mini-implants, due to their potential for osseointegration, are exposed to torque levels that may cause them to fracture during removal. Thus, it is advisable to control the torque levels applied during mini-implant removal.

Materials and methods

A torque sensor with strain gauges was used to analyze torque-limiting devices for their accuracy in reverse (counterclockwise) operation. Eight devices were tested in this manner, including a group of hand-operated drivers (n=3), a group of battery-operated drivers (n=4), and a mains-operated surgical unit (n=1). Each device was analyzed eight times at each of the various torque levels. Shapiro–Wilk, Kruskal–Wallis H-, and Mann–Whitney U-tests were used to analyze the results.

Results

Most of the various devices revealed significant differences upon comparison. The accuracy of torque control offered by the three hand drivers was clinically acceptable. As two of the four battery-operated drivers did not feature torque limitation in reverse mode, they did not prevent high torque levels from occurring. Likewise, some of the maximum torque levels observed in conjunction with the other two battery-operated drivers and the mains-operated surgical unit exceeded considerably the clinically recommended range of 10–25 Ncm.

Conclusion

Although miniscrews can be removed successfully with hand-operated drivers while limiting torque, we advise against the use of battery-operated drivers or mains-operated surgical units not offering torque limitation in reverse mode.

Zusammenfassung

Einleitung

Aufgrund des Osseointegrationspotenzials von Mini-Implantaten werden diese bei der Entfernung Drehmomenten ausgesetzt, die zur Fraktur des Mini-Implantates führen können. Eine Entfernung der Mini-Implantate unter Kontrolle des applizierten Drehmomentes erscheint sinnvoll.

Material und Methode

Acht Instrumente mit Drehmomentbegrenzung wurden mittels eines Drehmomentsensors mit Dehnungsmessstreifen auf die Genauigkeit der Drehmomentkontrolle im Linkslauf überprüft. Drei Geräte wiesen einen manuellen, vier einen elektrischen Antrieb auf, bei einem Gerät handelte es sich um eine chirurgische Einheit. Die Messungen wurden auf den unterschiedlichen Stufen je Instrument und Stufe acht Mal durchgeführt. Die Auswertung der Ergebnisse erfolgte mittels Shapiro-Wilk-, Kruskal-Wallis-H- sowie Mann-Whitney-U-Tests.

Ergebnisse

Zwischen den einzelnen Instrumenten bestehen zum Großteil signifikante Unterschiede. Die drei Geräte mit manuellem Antrieb wiesen eine klinisch ausreichende Genauigkeit der Drehmomentkontrolle auf. Von den vier elektrischen Geräten verfügten zwei herstellerseitig über keine Drehmomentbegrenzung im Linkslauf und ließen somit hohe Drehmomente zu. Auch die maximal zugelassenen Drehmomente der übrigen elektrischen Geräte sowie der chirurgischen Einheit lagen zum Teil deutlich oberhalb des klinisch zu empfehlenden Bereichs zwischen 10 und 25 Ncm.

Schlussfolgerung

Eine Entfernung von Mini-Schrauben unter Kontrolle des Drehmomentes ist mit manuellen Instrumenten möglich. Elektrische Instrumente oder chirurgische Einheiten ohne Drehmomentbegrenzung im Linkslauf können nicht zur Entfernung von Mini-Implantaten empfohlen werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Barbagallo LJ, Jones AS, Petocz P, Darendeliler MA (2008) Physical properties of root cementum: part 10. Comparison of the effects of invisible removable thermoplastic appliances with light and heavy orthodontic forces on premolar cementum. A microcomputed-tomography study. Am J Orthod Dentofacial Orthop 133:218–227

    Article  PubMed  Google Scholar 

  2. Büchter A, Wiechmann D, Koerdt S et al (2005) Load-related implant reaction of mini-implants used for orthodontic anchorage. Clin Oral Implant Res 16:473–479

    Article  Google Scholar 

  3. Chen YJ, Chen YH, Lin LD, Yao CC (2006) Removal torque of miniscrews used for orthodontic anchorage – a preliminary report. Int J Oral Maxillofac Implants 21:283–289

    PubMed  Google Scholar 

  4. Costa A, Raffainl M, Melsen B (1998) Miniscrews as orthodontic anchorage: a preliminary report. Int J Adult Orthodon Orthognath Surg 13:201–209

    PubMed  Google Scholar 

  5. Favero LG, Pisoni A, Paganelli C (2007) Removal torque of osseointegrated mini-implants: an in vivo evaluation. Eur J Orthod 29:443–448

    Article  PubMed  Google Scholar 

  6. Harris DA, Jones AS, Darendeliler MA (2006) Physical properties of root cementum: part 8. Volumetric analysis of root resorption craters after application of controlled intrusive light and heavy orthodontic forces: a microcomputed tomography scan study. Am J Orthod Dentofacial Orthop 130:639–647

    Article  PubMed  Google Scholar 

  7. Jung BA, Yildizhan F, Wehrbein H (2008) Bone-to-implant contact of orthodontic implants in humans – a histomorphometric investigation. Eur J Orthod 30:552–557

    Article  PubMed  Google Scholar 

  8. Kanomi R (1997) Mini-implant for orthodontic anchorage. J Clin Orthod 31:763–767

    PubMed  Google Scholar 

  9. Karl M, Kelly JR (2009) Influence of loading frequency on implant failure under cyclic fatigue conditions. Dent Mater 25:1426–1432

    Article  PubMed  Google Scholar 

  10. Kim SH, Cho JH, Chung KR et al (2008) Removal torque values of surface-treated mini-implants after loading. Am J Orthod Dentofacial Orthop 134:36–43

    Article  PubMed  Google Scholar 

  11. Kim SH, Lee SJ, Cho IS et al (2009) Rotational resistance of surface-treated mini-implants. Angle Orthod 79:899–907

    Article  PubMed  Google Scholar 

  12. Lee CK, Karl M, Kelly JR (2009) Evaluation of test protocol variables for dental implant fatigue research. Dent Mater 25:1419–1425

    Article  PubMed  Google Scholar 

  13. Lehnen S, McDonald F, Bourauel C et al (2011) Expectations, acceptance and preferences of patients in treatment with orthodontic mini-implants: part II: implant removal. J Orofac Orthop 72:214–222

    Article  PubMed  Google Scholar 

  14. Marquezin MC, Kobayashi FY, Montes AB et al (2012) Assessment of masticatory performance, bite force, orthodontic treatment need and orofacial dysfunction in children and adolescents. Arch Oral Biol 58:286−292

    Article  PubMed  Google Scholar 

  15. Melsen B, Costa A (2000) Immediate loading of implants used for orthodontic anchorage. Clin Orthod Res 3:23–28

    Article  PubMed  Google Scholar 

  16. Nicolas G, Bart VV (2008) Aspects in post-orthodontic removal of Orthosystem implants. Clin Oral Implants Res 19:1290–1294

    Article  PubMed  Google Scholar 

  17. Pauls A, Nienkemper M, Drescher D (2013) Accuracy of torque-limiting instruments for insertion of mini-implants – an in vitro- study. J Orofac Orthop

  18. Pithon MM, Nojima MG, Nojima LI (2011) In vitro evaluation of insertion and removal torques of orthodontic mini-implants. Int J Oral Maxillofac Surg 40:80–85

    Article  PubMed  Google Scholar 

  19. Präger TM, Mischkowski R, Laube N et al (2008) Remodeling along the bone-screw interface. J Orofac Orthop 69:337–348

    Article  PubMed  Google Scholar 

  20. Reicheneder C et al (2008) Mechanical loading of orthodontic miniscrews – significance and problems: an experimental study. Biomed Tech (Berl) 53:242–245

    Google Scholar 

  21. Reynders R, Ronchi L, Bipat S (2009) Mini-implants in orthodontics: a systematic review of the literature. Am J Orthod Dentofacial Orthop 135:564.e1–e19

    Article  PubMed  Google Scholar 

  22. Roberts WE, Smith RK, Zilberman Y et al (1984) Osseous adaptation to continuous loading of rigid endosseous implants. Am J Orthod 86:95–111

    Article  PubMed  Google Scholar 

  23. Schatzle M, Mannchen R, Zwahlen M, et al (2009) Survival and failure rates of orthodontic temporary anchorage devices: a systematic review. Clin Oral Implants Res 20:1351–1359

    Article  PubMed  Google Scholar 

  24. Seo W, Kim SH, Chung KR, Nelson G (2009) A pilot study of the osseointegration potential of a surface-treated mini-implant: bone contact of implants retrieved from patients. World J Orthod 10:202–210

    PubMed  Google Scholar 

  25. Shin YS, Ahn HW, Park YG et al (2012) Effects of predrilling on the osseointegration potential of mini-implants. Angle Orthod 82:1008−1013

    Article  PubMed  Google Scholar 

  26. Stanford N (2011) Mini-screws success rates sufficient for orthodontic treatment. Evid Based Dent 12:19

    Article  PubMed  Google Scholar 

  27. Suzuki EY, Suzuki B (2011) Placement and removal torque values of orthodontic miniscrew implants. Am J Orthod Dentofacial Orthop 139:669–678

    Article  PubMed  Google Scholar 

  28. Vande Vannet B, Sabzevar MM, Wehrbein H, Asscherickx K (2007) Osseointegration of miniscrews: a histomorphometric evaluation. Eur J Orthod 29:437–442

    Article  Google Scholar 

  29. Wehrbein H, Glatzmaier J, Mundwiller U et al (1996) The Orthosystem – a new implant system for orthodontic anchorage in the palate. J Orofac Orthop 57:142–153

    Article  PubMed  Google Scholar 

  30. Wilmes B, Panayotidis A, Drescher D (2011) Fracture resistance of orthodontic mini-implants: a biomechanical in vitro study. Eur J Orthod 33:396–401

    Article  PubMed  Google Scholar 

  31. Wilmes B, Rademacher C, Olthoff G, Drescher D (2006) Parameters affecting primary stability of orthodontic mini-implants. J Orofac Orthop 67:162–174

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We wish to thank Mr. Kump for fabricating the coupling appliance which was interposed between the torque sensor and contra-angled handpiece in the tests performed. We are also indebted to Günter Witt GmbH, NSK, Promedia, PSM and W&H for kindly providing the screwdrivers used in this study.

Danksagung

Wir danken Herrn Kump für die Herstellung der Kopplungsvorrichtung zwischen Drehmomentsensor und Winkelstückansatz sowie den Firmen Günter Witt GmbH, NSK, promedia, psm und W&H für die freundliche Überlassung der in dieser Studie verwendeten Schrauber.

Conflict of interest

No statement made.

Interessenkonflikt

Keine Angaben

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nienkemper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pauls, A., Nienkemper, M. & Drescher, D. Accuracy of torque-limiting devices for mini-implant removal: an in vitro study. J Orofac Orthop 74, 205–216 (2013). https://doi.org/10.1007/s00056-013-0141-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-013-0141-4

Keywords

Schlüsselwörter

Navigation