Skip to main content
Log in

Resorption behavior of a nanostructured bone substitute: in vitro investigation and clinical application

Untersuchung zum Resorptionsverhalten eines nanostrukturierten Knochenaufbaumaterials. In-vitro-Untersuchungen und klinische Anwendung

  • Original article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objectives

To develop an in vitro assay for quantitative analysis of the degradation to which a bone substitute is exposed by osteoclasts. The aim of establishing this method was to improve the predictability of carrying out tooth movements via bone substitutes and to provide a basis for verification in exemplary clinical cases.

Methods

After populating a bone substitute (NanoBone®; ArtOss, Germany) with osteoclastic cells, inductively-coupled mass spectrometry was used to evaluate changing calcium levels in the culture medium as a marker of resorption activity.

Results

It was observed that calcium levels increased substantially in the culture medium with the cells populating the bone substitute.

Conclusions

This in vitro assay is a valid method that can assist clinicians in selecting the appropriate materials for certain patients. While tooth movements occurring through this material were successful, uncertainty about the approach will remain as long-term results are not available.

Zusammenfassung

Zielsetzung

Das Ziel der Untersuchung war die Entwicklung eines In-vitro-Ansatzes zur Quantifizierung der Degradation eines Knochenersatzmaterials durch Osteoklasten. Auf Basis dieser Untersuchungen sollte die Zahnbewegung durch Knochenersatzmaterialien vorhersagbarer werden und in klinischen Beispielen überprüft werden.

Methode

Für die In-vitro-Untersuchung wurde ein Knochenersatzmaterial (NanoBone®, ArtOss, Deutschland) mit osteoklastären Zellen besiedelt und die Veränderungen der Kalziumkonzentration im Kulturmedium als Marker der Resorptionsaktiität mittels induktiver Massenspektrometrie gemessen.

Ergebnisse

In der in-vitro-Untersuchung zeigte sich über den Untersuchungszeitraum nach Besiedelung des Knochenersatzmaterials mit den Zellen eine deutliche Zunahme des Kalziumgehaltes im Kulturmedium.

Schlussfolgerung

Die hier beschriebene In-vitro-Methode ist ein valider Ansatz, die dem Behandler helfen kann die richtige Materialauswahl für seinen spezifischen Patienten zu treffen. Die Zahnbewegungen durch das hier beschrieben Material war erfolgreich, jedoch bleiben immer noch einige Unsicherheiten, da Langzeitergebnisse fehlen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alcaide M, Serrano MC, Pagani R et al (2009) L929 fibroblast and Saos-2 osteoblast response to hydroxyapatite-betaTCP/agarose biomaterial. J Biomed Mater Res A 2:539–549

    Google Scholar 

  2. Au AY, Au RY, Al-Talib TK et al (2008) Consil bioactive glass particles enhance osteoblast proliferation and maintain extracellular matrix production in vitro. J Biomed Mater Res A 3:678–684

    Google Scholar 

  3. Barka T, Anderson PJ (1962) Histochemical methods for acid phosphatase using hexazonium pararosaniline as coupler. J Histochem Cytochem 741–753

  4. Blair HC (1998) How the osteoclast degrades bone. Bioessays 10:837–846

    Article  Google Scholar 

  5. Bloemers FW, Blokhuis TJ, Patka P et al (2003) Autologous bone versus calcium-phosphate ceramics in treatment of experimental bone defects. J Biomed Mater Res B Appl Biomater 2:526–531

    Article  Google Scholar 

  6. Cardaropoli D, Re S, Manuzzi W et al (2006) Bio-Oss collagen and orthodontic movement for the treatment of infrabony defects in the esthetic zone. Int J Periodontics Restorative Dent 26:553–559

    PubMed  Google Scholar 

  7. Collin-Osdoby P, Yu X, Zheng H et al (2003) RANKL-mediated osteoclast formation from murine RAW 264.7 cells. Methods Mol Med 80:153–166

    PubMed  Google Scholar 

  8. Constantz BR, Barr BM, Ison IC et al (1998) Histological, chemical, and crystallographic analysis of four calcium phosphate cements in different rabbit osseous sites. J Biomed Mater Res 4:451–461

    Article  Google Scholar 

  9. Eriksen EF (2010) Cellular mechanisms of bone remodelling. Rev Endocr Metab Disord 11:219–227

    Article  PubMed  Google Scholar 

  10. Feinberg SE, Weisbrode SE, Heintschel G (1989) Radiographic and histological analysis of tooth eruption through calcium phosphate ceramics in the cat. Arch Oral Biol 34:975–984

    Article  PubMed  Google Scholar 

  11. Gomi K, Lowenberg B, Shapiro G et al (1993) Resorption of sintered synthetic hydroxyapatite by osteoclasts in vitro. Biomaterials 2:91–96

    Article  Google Scholar 

  12. Götz W, Lenz S, Reichert C et al (2010) A preliminary study in osteoinduction by a nano-crystalline hydroxyapatite in the mini pig. Folia Histochem Cytobiol 48:589–596

    PubMed  Google Scholar 

  13. Götz W, Gerber T, Lossdörfer S et al (2008) Immunohistochemical characterization of nanocrystalline hydroxyapatite silica gel (NanoBone®) osteogenesis: a study on biopsies from human jaws. Clin Oral Implants Res 19:1016–1026

    Article  PubMed  Google Scholar 

  14. Holtgrave EA (1989) Inhibition of tooth eruption through calcium-phosphate ceramic granules in the rat. J Oral Maxillofac Surg 47:1043–1047

    Article  PubMed  Google Scholar 

  15. Habibovic P, de Groot K (2007) Osteoinductive biomaterials–properties and relevance in bone repair. J Tissue Eng Regen Med 1:25–32

    Article  PubMed  Google Scholar 

  16. Jones DH, Kong YY, Penninger JM (2002) Role of RANKL and RANK in bone loss and arthritis. Ann Rheum Dis ii32–39

  17. Kadoya Y, Al-Saffar N, Kobayashi A et al (1994) The expression of osteoclast markers on foreign body giant cells. Bone Miner 2:85–96

    Article  Google Scholar 

  18. Kong YY, Feige U, Sarosi I et al (1999) Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 6759:304–309

    Google Scholar 

  19. Kübler A, Neugebauer J, Oh JH et al (2004) Growth and proliferation of human osteoblasts on different bone graft substitutes: an in vitro study. Implant Dent 2:171–179

    Article  Google Scholar 

  20. Lossdörfer S, Götz W, Jäger A (2011) PTH(1-34)-induced changes in RANKL and OPG expression by human PDL cells modify osteoclast biology in a co-culture model with RAW 264.7 cells. Clin Oral Investig 15:941–952

    Article  PubMed  Google Scholar 

  21. Merten HA, Wiltfang J, Honig JF et al (2000) Intra-individual comparison of alpha- and beta-TCP ceramics in an animal experiment. Mund Kiefer Gesichtschir 4:509–515

    Article  Google Scholar 

  22. Monchau F, Lefèvre A, Descamps M et al (2002) In vitro studies of human and rat osteoclast activity on hydroxyapatite, beta-tricalcium phosphate, calcium carbonate. Biomol Eng 2:143–152

    Article  Google Scholar 

  23. Narducci P, Nicolin V (2009) Differentiation of activated monocytes into osteoclast-like cells on a hydroxyapatite substrate: an in vitro study. Ann Anat 4:349–355

    Article  Google Scholar 

  24. Perrotti V, Nicholls BM, Horton MA et al (2009) Human osteoclast formation and activity on a xenogenous bone mineral. J Biomed Mater Res A 1:238–246

    Google Scholar 

  25. Perrotti V, Nicholls BM, Piattelli A (2009) Human osteoclast formation and activity on an equine spongy bone substitute. Clin Oral Implants Res 1:17–23

    Article  Google Scholar 

  26. Redey SA, Razzouk S, Rey C et al (1999) Osteoclast adhesion and activity on synthetic hydroxyapatite, carbonated hydroxyapatite, and natural calcium carbonate: relationship to surface energies. J Biomed Mater Res 2:140–147

    Article  Google Scholar 

  27. Reichert C, Al-Nawas B, Smeets R et al (2009) In vitro proliferation of human osteogenic cells in presence of different commercial bone substitute materials combined with enamel matrix derivatives. Head Face Med 12:23–28

    Article  Google Scholar 

  28. Reichert C, Götz W, Smeets R et al (2010) The impact of nonautogenous bone graft on orthodontic treatment. Quintessence Int 41:665–672

    PubMed  Google Scholar 

  29. Reichert C, Wenghoefer M, Götz W et al (2011) Pilot study on orthodontic space closure after guided bone regeneration. J Orofac Orthop 72:45–50

    Article  PubMed  Google Scholar 

  30. Romas E, Bakharevski O, Hards DK et al (2000) Expression of osteoclast differentiation factor at sites of bone erosion in collagen-induced arthritis. Arthritis Rheum 4:821–826

    Article  Google Scholar 

  31. Rousselle AV, Heymann D (2002) Osteoclastic acidification pathways during bone resorption. Bone 4:533–540

    Article  Google Scholar 

  32. Salo J, Lehenkari P, Mulari M et al (1997) Removal of osteoclast bone resorption products by transcytosis. Science 5310:270–273

    Article  Google Scholar 

  33. Schilling AF, Linhart W, Filke S et al (2004) Resorbability of bone substitute biomaterials by human osteoclasts. Biomaterials 18:3963–3972

    Article  Google Scholar 

  34. Schneider B, Diedrich P (1989) Interaktion von kieferorthopädischer Zahnbewegung und Hydroxylapatit-Keramik. Dtsch Zahnärztl Zeitschr 44:282–285

    Google Scholar 

  35. Selby M, Hieftje GM (1987) Inductively coupled plasma-mass spectrometry: a status report. Am Lab 16, 18, 20–24, 26, 28

    Google Scholar 

  36. Shishatskaya EI, Volova TG, Puzyr AP et al (2004) Tissue response to the implantation of biodegradable polyhydroxyalkanoate sutures. J Mater Sci Mater Med 6:719–728

    Article  Google Scholar 

  37. Silva I, Branco JC (2011) RANK/RANKL/OPG: literature review. Acta Reumatol Port 36:209–218

    PubMed  Google Scholar 

  38. Taylor JC, Cuff SE, Leger JP et al (2002) In vitro osteoclast resorption of bone substitute biomaterials used for implant site augmentation: a pilot study. Int J Oral Maxillofac Implants 17:321–330

    PubMed  Google Scholar 

  39. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 5484:1504–1508

    Article  Google Scholar 

  40. Wada T, Hara K, Ozawa H (1989) Ultrastructural and histochemical study of beta-tricalcium phosphate resorbing cells in periodontium of dogs. J Periodontal Res 6:391–401

    Article  Google Scholar 

  41. Weijs WL, Siebers TJ, Kuijpers-Jagtman AM et al (2010) Early secondary closure of alveolar clefts with mandibular symphyseal bone grafts and beta-tri calcium phosphate (beta-TCP). Int J Oral Maxillofac Surg 39:424–429

    Article  PubMed  Google Scholar 

  42. Wenisch S, Stahl JP, Horas U et al (2003) In vivo mechanisms of hydroxyapatite ceramic degradation by osteoclasts: fine structural microscopy. J Biomed Mater Res A 3:713–718

    Article  Google Scholar 

  43. Wilcko WM, Wilcko MT, Bouquot JE et al (2001) Rapid orthodontics with alveolar reshaping: two case reports of decrowding. Int J Periodontics Restorative Dent 21:9–19

    PubMed  Google Scholar 

  44. Yamaguchi M (2009) RANK/RANKL/OPG during orthodontic tooth movement. Orthod Craniofac Res 12:113–119

    Article  PubMed  Google Scholar 

  45. Zhang Z, Egaña JT, Reckhenrich AK et al (2012) Cell-based resorption assays for bone graft substitutes. Acta Biomater 8:13–19

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states the following: CR and WG are consultants for ArtOss.

Interessenkonflikt

Der korrespondierende Autor weist für sich und seine Koautoren auf folgende Beziehung/en hin: CR und WG sind als Referenten der Fa. ArtOss tätig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Reichert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichert, C., Götz, W., Reimann, S. et al. Resorption behavior of a nanostructured bone substitute: in vitro investigation and clinical application. J Orofac Orthop 74, 165–175 (2013). https://doi.org/10.1007/s00056-012-0136-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-012-0136-6

Keywords

Schlüsselwörter

Navigation