Skip to main content
Log in

Evaluation of bovine and human teeth exposed to thermocycling for microleakage under bonded metal brackets

Randspaltuntersuchung von Metallbrackets bei bovinen und humanen Zähnen unter Thermocycling

  • Original article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Introduction

Bovine teeth are commonly used as substitutes for human teeth in scientific investigations. The present study was performed in vitro with the objective of comparing bovine and human enamel subjected to thermocycling for microleakage beneath metal brackets.

Materials and methods

A total of 50 bovine and human teeth (25 per group) void of defects or carious decay were extracted and stored in chloramine B (0.5%). A light-curing adhesive (Transbond™ XT) was used as instructed by the manufacturer (3M Unitek, Monrovia, CA, USA) to bond a metal bracket (discovery®; Dentaurum, Ispringen, Germany) to the surface of each tooth following 30 s of enamel etching (phosphoric acid 35%). After 24 h of dye penetration in methylene blue (0.5%), the cervical and incisal bracket surfaces were analyzed by light microscopy for excess bonding material, dye penetration, and microleakage at the bracket–adhesive and adhesive–enamel interfaces. Staining and evaluation was repeated after thermocycling (5000 cycles at 5/55 °C).

Results

Before thermocycling, the number of human teeth showing marginal gaps was one-third the number of bovine teeth (p<0.001). After thermocycling, the distribution of gaps was similar (p=0.180). The adhesive–enamel interface was most frequently affected (on 74% of human and 64% of bovine teeth). No dye penetration in either group after examining a horizontal slice through the bracket basis was observed.

Conclusion

Immediately after bonding, less microleakage was observed around the base of metal brackets on human than bovine teeth. These marginal gaps were, however, superficial in both groups, none of them involving deep penetration of dye under the bracket base.

Zusammenfassung

Einleitung

In vielen wissenschaftlichen Studien werden bovine Zähne als Äquivalent für humane Zähne verwendet. Das Ziel dieser In-vitro-Studie war der Vergleich der Randspalten von Metallbrackets an bovinem und humanem Zahnschmelz unter Thermocycling (TC).

Material und Methode

Fünfundzwanzig karies- und defektfreie Zähne pro Gruppe wurden extrahiert und in Chloramin-B (0,5%) gelagert. Nach 30-sekündiger Schmelzätzung (Phosphorsäure, 35%) wurde ein Metallbracket (Discovery®, Dentaurum, Ispringen, Deutschland) mit lichthärtendem Adhäsiv (Transbond™XT, 3M Unitek, Monrovia, CA, USA) nach Herstellerrichtlinien auf die Schmelzoberfläche geklebt. Nach 24 h Färbung in Methylenblau (0,5%) erfolgte eine lichtmikroskopische Untersuchung der zervikalen und inzisalen Bracketflächen auf Überschüsse, Verfärbungen und Randspalten (Grenzen Bracket/Adhäsiv, Adhäsiv/Schmelz). Nach TC (5000-mal, 5/55°C) erfolgte eine erneute Färbung und Auswertung.

Ergebnisse

Vor TC zeigten humane Zähne im Vergleich zu bovinen 3-mal weniger Randspalten (p<0,001). Nach TC fand sich eine relativ ähnliche Anzahl an Randspalten (p=0,180). Es zeigten sich die meisten Randspalten für humane (74%) und bovine (64%) Zähne an der Grenzfläche Adhäsiv/Schmelz. Nach horizontalem Schnitt durch die Bracketbasis war bei beiden Gruppen an beiden Grenzen keine Farbpenetration zu beobachten.

Schlussfolgerung

Direkt nach dem Kleben der Metallbrackets haben humane Zähne weniger Randspalten als bovine Zähne um die Bracketbasis herum. Jedoch waren die Randspalten im Bereich der Bracketbasis bei beiden Gruppen oberflächlich und führten zu keiner Farbpenetration in tiefere Schichten unterhalb der Bracketbasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Abdelnaby YL, Al-Wakeel EE (2010) Influence of modifying the resin coat application protocol on bond strength and microleakage of metal orthodontic brackets. Angle Orthod 80:378–384

    Article  PubMed  Google Scholar 

  2. Arnold RW, Combe EC, Warford JH (2002) Bonding of stainless steel brackets to enamel with a new self-etching primer. Am J Orthod Dentofacial Orthop 122:274–276

    Article  PubMed  Google Scholar 

  3. Bishara SE, Ajlouni R, Laffoon JF (2003) Effect of thermocycling on the shear bond strength of a cyanoacrylate orthodontic adhesive. Am J Orthod Dentofacial Orthop 123:21–24

    Article  PubMed  Google Scholar 

  4. Bishara SE et al (2007) Shear bond strength comparison of two adhesive systems following thermocycling. A new self-etch primer and a resin-modified glass ionomer. Angle Orthod 77:337–341

    Article  PubMed  Google Scholar 

  5. Brantley WA, Eliades T (2001) Enamel etching and bond strength. In: Brantley WA, Eliades T (eds) Orthodontic materials: scientific and clinical aspects. Georg Thieme, Stuttgart, pp 143–169

  6. Cadwell DE, Johannessen B (1971) Adhesion of restorative materials to teeth. J Dent Res 50:1517–1525

    Article  PubMed  Google Scholar 

  7. Callister WD (1991) Room-temperature linear coefficient of thermal expansion values for various engineering materials. In: Callister WD (ed) Materials science and engineering: an introduction. 2nd edn. John Wiley & Sons, New York, pp 738–739

  8. Causton BE, Johnson NW (1979) Changes in the dentin of human teeth following extraction and their implication for in vitro studies of adhesion to tooth structure. Arch Oral Biol 24:229–232

    Article  PubMed  Google Scholar 

  9. Chapra A, White GE (2003) Leakage reduction with a surface-penetrating sealant around stainless-steel orthodontic brackets bonded with a light cured composite resin. J Clin Pediatr Dent 27:271–276

    PubMed  Google Scholar 

  10. Crim GA, Swartz ML, Phillips RW (1985) Comparison of four thermocycling techniques. J Prosthet Dent 53:50–53

    Article  PubMed  Google Scholar 

  11. Cucu M, Driessen CH, Ferreira PD (2002) The influence of orthodontic bracket base diameter and mesh size on bond strength. SADJ 57:16–20

    PubMed  Google Scholar 

  12. Daub J et al (2006) Bond strength of direct and indirect bonded brackets after thermocycling. Angle Orthod 76:295–300

    PubMed  Google Scholar 

  13. Edmunds DH, Whittaker DK, Green RM (1988) Suitability of human, bovine, equin and ovine tooth enamel for studies of artificial bacterial carious lesions. Caries Res 22:327–336

    Article  PubMed  Google Scholar 

  14. Eliades T, Eliades G, Brantley WA (1995) Microbial attachment on orthodontic appliances: I. Wettability and early pellicle formation on bracket materials. Am J Orthod Dentofacial Orthop 108:351–360

    Article  PubMed  Google Scholar 

  15. Ernst CP et al (2008) Marginal integrity of class V restorations: SEM versus dye penetration. Dent Mater 24:319–327

    Article  PubMed  Google Scholar 

  16. Flim GJ, Arends J (1992) Diffusion of 45Ca in bovine enamel. J Dent Res 71:913–919

    Google Scholar 

  17. Haller B et al (1993) Effect of storage media on microleakage of five dentin bonding agents. Dent Mater 9:191–197

    Article  PubMed  Google Scholar 

  18. Hashimoto M et al (2001) Resin-tooth adhesive interfaces after long-term function. Am J Dent 14:211–215

    PubMed  Google Scholar 

  19. Hobson RS, McCabe JF, Hogg SD (2001) Bond strength to surface enamel for different tooth types. Dent Mater 17:184–189

    Article  PubMed  Google Scholar 

  20. Knoll M, Gwinnett AJ, Wolff MS (1986) Shear strength of brackets bonded to anterior and posterior teeth. Am J Orthod 89:476–479

    Article  PubMed  Google Scholar 

  21. Lopes MB et al (2009) Comparison of microleakage in human and bovine substrates using confocal microscopy. Bull Tokyo Dent Coll 50:111–116

    Article  PubMed  Google Scholar 

  22. Lopes MB et al (2003) Comparative study of the dental substrate used in shear bond strength tests. Pesqui Odontol Bras 17:171–175

    Article  PubMed  Google Scholar 

  23. Mayer T, Eickholz P (1997) Microleakage of temporary restorations after thermocycling and mechanical loading. J Endod 23:320–322

    Article  PubMed  Google Scholar 

  24. Mellberg JR (1992) Hard-tissue substrates for evaluation of cariogenic and anti-cariogenic activity in situ. J Dent Res 71:913–919

    PubMed  Google Scholar 

  25. Nakamichi I, Iwaku M, Fusayama T (1983) Bovine teeth as possible substitutes in the adhesion test. J Dent Res 62:1076–1081

    Article  PubMed  Google Scholar 

  26. Navarro R et al (2011) The effects of two soft drinks on bond strength, bracket microleakage, and adhesive remnant on intact and sealed enamel. Eur J Orthod 33:60–65

    Article  PubMed  Google Scholar 

  27. Oesterle LJ, Shellhart WC, Belanger GK (1998) The use of bovine enamel in bonding studies. Am J Orthod Dentofacial Orthop 114:514–519

    Article  PubMed  Google Scholar 

  28. Ogaard B et al (1988) Orthodontic appliances and enamel demineralization. Part 2. Prevention and treatment of lesions. Am J Orthod Dentofacial Orthop 94:123–128

    Article  PubMed  Google Scholar 

  29. O’Reilly MM, Featherstone JD (1987) Demineralization and remineralisation around orthodontic appliances: an in vivo study. Am J Orthod Dentofacial Orthop 92:33–40

    Article  Google Scholar 

  30. Reeves GW et al (1995) Microleakage of new bonding systems using human and bovine teeth. Oper Dent 20:230–235

    PubMed  Google Scholar 

  31. Reis AF et al (2004) Comparison of microtensile bond strength to enamel and dentin of human, bovine and porcine teeth. J Adhes Dent 6:117–121

    PubMed  Google Scholar 

  32. Retief DH et al (1990) Extracted human versus bovine teeth in laboratory studies. Am J Dent 3:253–258

    PubMed  Google Scholar 

  33. Roulet JF (1987) A materials scientist’s view: assessment of wear and marginal integrity. Quint Int 18:534–552

    Google Scholar 

  34. Saleh F, Taymour N (2003) Validity of using bovine teeth as a substitute for human counterparts in adhesive tests. East Mediterr Health 9:201–207

    Google Scholar 

  35. Santos BM et al (2010) Shear bond strength of brackets bonded with hydrophilic and hydrophobic bond systems under contamination. Angle Orthod 80:963–967

    Article  PubMed  Google Scholar 

  36. Sorel O et al (2002) Comparison of bond strength between simple foil mesh and laser-structured base retention brackets. Am J Orthod Dentofacial Orthop 122:260–266

    Article  PubMed  Google Scholar 

  37. Van Noort R (2002) (2002) Thermal Expansion. In: Van Noort R (ed) Introduction to dental materials. 2nd edn. Mosby, London, pp 54–55

  38. Vicente A, Ortiz AJ, Bravo LA (2009) Microleakage beneath brackets bonded with flowable materials: effect of thermocycling. Eur J Orthod 31:390–396

    Article  PubMed  Google Scholar 

  39. Wilson RM, Donly KJ (2001) Demineralization around orthodontic brackets bonded with resin-modified glass ionomer cement and fluoride-releasing resin composite. Pediatr Dent 23:255–259

    PubMed  Google Scholar 

  40. Yagci A et al (2010) Microleakage under orthodontic brackets bonded with the custom base indirect bonding technique. Eur J Orthod 32:259–263

    Article  PubMed  Google Scholar 

  41. Yassen GH, Platt JA, Hara AT (2011) Bovine teeth as substitute for human teeth in dental research: a review of literature. J Oral Sci 53:273–282

    Article  PubMed  Google Scholar 

  42. Zero DT (1995) In situ caries models. Adv Dent Res 9:214–230

    PubMed  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Canbek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canbek, K., Karbach, M., Gottschalk, F. et al. Evaluation of bovine and human teeth exposed to thermocycling for microleakage under bonded metal brackets. J Orofac Orthop 74, 102–112 (2013). https://doi.org/10.1007/s00056-012-0123-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-012-0123-y

Keywords

Schlüsselwörter

Navigation