Skip to main content
Log in

Gene analysis of signal transduction factors and transcription factors in periodontal ligament cells following application of dynamic strain

Genanalyse von Signaltransduktions- und Transkriptionsfaktoren in PDL-Zellen nach dynamischer Dehnung

  • Original article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objective

Orthodontic treatment is usually associated with the application of forces to teeth and periodontium. Instrumental in transmitting these forces are the cells of the periodontal ligament (PDL). In the present study, we used an established strain model to investigate the potential role of biophysical stimulation in modulating the gene expression pattern of these PDL cells.

Materials and methods

PDL cells derived from non-carious and periodontally healthy teeth of six patients were grown on culture plates coated with collagen type I. Upon completion of culture, dynamic strain was applied to the cells for 24 h, using 3% of tensile force and a frequency of 0.05 Hz. This loading protocol for biomechanical stimulation was followed by extracting the RNA from the cells and using a RT2 PCR array® for analysis.

Results

Compared to non-stimulated control cells, this analysis revealed the induction of several factors (e.g., RELA, IRF1, MAX, MYC, CDKN1B, BCL2, BCL2A1) known to influence tissue homeostasis by contributing essentially to cell proliferation, cell differentiation, and the inhibition of apoptosis.

Conclusion

This study demonstrates that the biomechanical stimulation of PDL cells is an important factor in periodontal tissue homeostasis.

Zusammenfassung

Zielsetzung

Während der kieferorthopädischen Therapie kommt es in der Regel zu einer Kraftapplikation auf Zähne und somit auch auf den Zahnhalteapparat. Bei der Kraftübertragung haben vor allem die Zellen des parodontalen Ligaments (PDL-Zellen) eine entscheidende Bedeutung. Inwieweit eine biophysikalische Stimulierung das Genexpressionsmuster der Zellen beeinflusst, sollte in einem etablierten Dehnungsmodell untersucht werden.

Material und Methodik

PDL-Zellen von sechs Patienten wurden von gesunden, kariesfreien Zähnen gewonnen und auf Kollagen-Typ-I-beschichteten BioFlex®-Platten kultiviert. Anschließend wurden die Zellen mit einer dynamischen Zugkraft von 3% für 24 h mit einer Frequenz von 0,05 Hz gedehnt. Nach Abschluss des Belastungsregimes wurde die RNA aus den Zellen extrahiert und das RT2 Profiler PCR Array® durchgeführt.

Ergebnisse

In der Array-Analyse zeigte sich nach biomechanischer Stimulation im Vergleich zu unstimulierten Kontrollzellen eine Induktion mehrerer Faktoren (u. a. RELA, IRF1, MAX, MYC, CDKN1B, BCL2, BCL2A1). Diese spielen eine entscheidende Rolle bei der Zellproliferation, Zelldifferenzierung und Inhibition der Apoptose und beeinflussen somit die Gewebehomöostase.

Schlussfolgerung

In der Studie konnte gezeigt werden, dass die biomechanische Stimulation von PDL-Zellen ein wichtiger Faktor in der Gewebehomöostase des parodontalen Gewebes ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Basdra EK, Komposch G (1997) Osteoblast-like properties of human periodontal ligament cells: an in vitro analysis. Eur J Orthod 19:6–621

    Article  Google Scholar 

  2. Bellido T, Borba VZ, Roberson P, Manolagas SC (1997) Activation of the Janus kinase/STAT (signal transducer and activator of transcription) signal transduction pathway by interleukin-6-type cytokines promotes osteoblast differentiation. Endocrinology 138:3666–3676

    Article  PubMed  Google Scholar 

  3. Berg JM, Tymoczko JL, Stryer L (2002) Chapter 15. Signal-transduction pathways: an introduction to information metabolism biochemistry, 5th edn. W. H. Freeman, New York

  4. Carnes DL, Maeder CL, Graves DT (1997) Cells with osteoblastic phenotypes can be explanted from human gingiva and periodontal ligament. J Periodontol 68:701–707

    Article  PubMed  Google Scholar 

  5. Choi MH, Noh WC, Park JW et al (2011) Gene expression pattern during osteogenic differentiation of human periodontal ligament cells in vitro. J Periodontal Implant Sci 41:167–175

    Article  PubMed  Google Scholar 

  6. Davidovitch Z (1991) Tooth movement. Crit Rev Oral Biol Med 2:411–450

    PubMed  Google Scholar 

  7. Araujo RM de, Oba Y, Moriyama K (2007) Identification of genes related to mechanical stress in human periodontal ligament cells using microarray analysis. J Periodontal Res 42:22

    Google Scholar 

  8. Deschner J, Rath-Deschner B, Reimann S et al (2007) Regulatory effects of biophysical strain on rat TMJ discs. Ann Anat 189:326–328

    Article  PubMed  Google Scholar 

  9. Farré D, Roset R, Huerta M et al (2003) Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res 31(13):3651–3653

    Article  PubMed  Google Scholar 

  10. Hong SY, Jeon YM, Lee HJ et al (2010) Activation of RhoA and FAK induces ERK-mediated osteopontin expression in mechanical force-subjected periodontal ligament fibroblasts. Mol Cell Biochem 335:263–272

    Article  PubMed  Google Scholar 

  11. Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10:63–73

    Article  PubMed  Google Scholar 

  12. Jeon YM, Kook SH, Son YO et al (2009) Role of MAPK in mechanical force-induced up-regulation of type I collagen and osteopontin in human gingival fribroblasts. Mol Cell Biochem 320:45–52

    Article  PubMed  Google Scholar 

  13. Kook SH, Jang YS, Lee JC (2011) Involvement of JNK-AP-1 and ERK-NF-? B signaling in tension-stimulated expression of Type I collagen and MMP-1 in human periodontal ligament fibroblasts. J Appl Physiol 111:75–83

    Article  Google Scholar 

  14. Krishnan V, Davidovitch Z (2006) Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Denofac Orthop 129:496–e1

    Google Scholar 

  15. Latchman DS (1997) Transcription factors: an overview. Int J Biochem Cell Biol 29:1305–1312

    Article  PubMed  Google Scholar 

  16. Leon ER, Iwasaki K, Komaki M et al (2007) Osteogenic effect of interleukin-11 and synergism with ascorbic acid in human periodontal ligament cells. J Periodontal Res 42:527–535

    Article  PubMed  Google Scholar 

  17. Masella RS, Meister M (2006) Current concepts in the biology of orthodontic tooth movement. Am J Orthod Dentofacial Orthop 129:458–468

    Article  PubMed  Google Scholar 

  18. Matsuda N, Yokoyama K, Takeshita S, Watanabe M (1998) Role of epidermal growth factor and its receptor in mechanical stress-induced differentiation of human periodontal ligament cells in vitro. Arch Oral Biol 43(12):987–997

    Article  PubMed  Google Scholar 

  19. McCabe LR, Banerjee C, Kundu R et al (1996) Developmental expression and activities of specific fos and jun proteins are functionally related to osteoblast maturation: role of Fra-2 and Jun D during differentiation. Endocrinology 137:4398–4408

    Article  PubMed  Google Scholar 

  20. Meikle MC (2006) The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod 28:221–240

    Article  PubMed  Google Scholar 

  21. Messeguer X, Escudero R, Farré D et al (2002) PROMO: detection of known transcription regulatory elements using species-tailored searches. 18(2):333–334

  22. Monnouchi S, Maeda H, Fujii S et al (2011) The roles of angiotensin II in stretched periodontal ligament cells. J Dent Res 90(2):181–185

    Article  PubMed  Google Scholar 

  23. Natali AN, Pavan PG, Scarpa C (2004) Numerical analysis of tooth obility: formulation of a non-linear constitutive law fort he periodontal ligament. Dental Materials 20:623–629

    Article  PubMed  Google Scholar 

  24. Nokhbehsaim M, Deschner B, Winter J et al (2010) Contribution of orthodontic load to inflammation-mediated periodontal destruction. J Orofac Orthop 71:390–402

    Article  PubMed  Google Scholar 

  25. Pavasant P, Yongchaitrakul T (2011) Role of mechanical stress on the function of periodontal ligament cells. Periodontol 2000(56):4–165

    Google Scholar 

  26. Pavlidis D, Bourauel C, Rahimi A et al (2009) Proliferation and differentiation of periodontal ligament cells following short-term tooth movement in the rat using different regimens of loading. Eur J Orthod 31:565–571

    Article  PubMed  Google Scholar 

  27. Pearson G, Robinson F (2001) Mitogen-Activated Protein (MAP) Kinase pathways: regulation and physiological functions. Endocr Rev 22:3–183

    Article  Google Scholar 

  28. Piek E, Sleumer LS, Someren EP van et al (2010) Osteo-transcriptomics of human mesenchymal stem cells: accelerated gene expression and osteoblast differentiation induced by vitamin D reveals c-MYC as an enhancer of BMP2-induced osteogenesis. Bone 46:613–627

    Article  PubMed  Google Scholar 

  29. Premaraj S, Souza I, Premaraj T (2011) Mechanical loading activates β-catenin signaling in periodontal ligament cells. Angle Orthod 81:592–599

    Article  PubMed  Google Scholar 

  30. Rath-Deschner B, Deschner J, Reimann S et al (2009) Regulatory effects of biomechanical strain on the insulin-like growth factor system in human periodontal cells. J Biomech 42:2584–2589

    Article  PubMed  Google Scholar 

  31. Reimold AM, Grusby MJ, Kosaras B et al (1996) Chondrodysplasia and neurological abnormalities in ATF-2-deficient mice. Nature 379:262–265

    Article  PubMed  Google Scholar 

  32. Ritter N, Mussig E, Steinberg T et al (2007) Elevated expression of genes assigned to NF-kappaB and apoptotic pathways in human periodontal ligament fibroblasts following mechanical stretch. Cell Tissue Res 328(3):537–548

    Article  PubMed  Google Scholar 

  33. Seger R, Krebs E (1995) The MAPK signaling cascade. FASEB J 9:726–735

    PubMed  Google Scholar 

  34. Tsuji K, Uno K, Zhang GX, Tamura M (2004) Periodontal ligament cells under intermittent tensile stress regulate mRNA expression of osteoprotegerin and tissue inhibitor of matrix metalloprotease-1 and -2. J Bone Miner Metab 22(2):94–103

    Article  PubMed  Google Scholar 

  35. Wescott DC, Pinkerton MN, Gaffey BJ et al (2007) Osteogenic gene expression by human periodontal ligament cells under cyclic tension. J Dent Res 86:1212–1216

    Article  PubMed  Google Scholar 

  36. Xu C, Hao Y, Wei B et al (2011) Apoptotic gene expression by human periodontal ligament cells following cyclic stretch. J Periodontal Res 46:742–748

    Article  PubMed  Google Scholar 

  37. Yamashiro K, Myokai F, Hiratsuka K et al (2007) Oligonucleotide array analysis of cyclic tension-responsive genes in human periodontal ligament fibroblasts. Int J Biochem Cell Biol 39:910–921

    Article  PubMed  Google Scholar 

  38. Yang YQ, Li XT, Rabie AB et al (2006) Human periodontal ligament cells express osteoblastic phenotypes under intermittent force loading in vitro. Front Biosci 11:776–781

    Article  PubMed  Google Scholar 

  39. Zainal Ariffin SH et al (2011) Cellular and molecular changes in orthodontic tooth movement. Sci World J 11:1788–1803

    Article  Google Scholar 

  40. Zambuzzi WF, Bruni-Cardoso A, Granjeiro JM et al (2009) On the road to understanding of the osteoblast adhesion: cytoskeleton organization is rearranged by distinct signaling pathways. J Cell Biochem 108:134–144

    Article  PubMed  Google Scholar 

  41. Zhu J, Zhang X, Wang C et al (2008) Different magnitudes of tensile strain induce human osteoblasts differentiation associated with the activation of ERK1/2 phosphorylation. Int J Mol Sci 9:2322–2332

    Article  PubMed  Google Scholar 

  42. Ziegler N, Alonso A, Steinberg T et al (2010) Mechano-transduction in periodontal ligament cells identifies activated states of MAP-kinases p42/44 and p38-stress kinase as a mechanism for MMP-13 expression. BMC Cell Biol 11:10

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

We would like to thank Dipl.-Biol. Jan Reckenbeil and Imke Beier for their support. This study was funded by the German Research Foundation (KFO208/TP7) and the Medical Faculty of the University of Bonn.

Danksagung

Wir bedanken uns bei Herrn Dipl.-Biol. Jan Reckenbeil und bei Frau Imke Beier für ihre Unterstützung. Diese Studie wurde unterstützt von der Deutschen Forschungsgemeinschaft (KFO208/TP7) und der Medizinischen Fakultät der Universität Bonn.

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Interessenkonflikt

Die korrespondierende Autorin gibt für sich und ihre Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Deschner.

Additional information

Birgit Deschner and Björn Rath contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deschner, B., Rath, B., Jäger, A. et al. Gene analysis of signal transduction factors and transcription factors in periodontal ligament cells following application of dynamic strain. J Orofac Orthop 73, 486–497 (2012). https://doi.org/10.1007/s00056-012-0104-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-012-0104-1

Keywords

Schlüsselwörter

Navigation