Skip to main content
Log in

Aphid-deprivation from Brassica plants results in increased isothiocyanate release and parasitoid attraction

  • Original Article
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

In response to insect herbivory, plants release volatile blends that differ quantitatively, and in many cases also qualitatively, from those of undamaged plants. These altered blends can attract the herbivore’s natural antagonists, and such herbivore-induced volatile blends have often been interpreted as co-evolved plant–insect antagonist signals. When comparing volatile profiles of infested Brassica oleracea var. gemmifera L. plants (Brassicales: Brassicaceae), on which Brevicoryne brassicae L. (Hemiptera: Aphididae) aphids are feeding, with previously infested plants (i.e., deprived of aphids four hours prior to volatile collection), we found that the emission of a particular volatile compound, the glucosinolate breakdown product allyl isothiocyanate, was significantly higher in the latter. We used dual choice olfactometry to evaluate attractiveness of plants and aphids to Diaeretiella rapae (M’Intosh 1855) (Hymenoptera: Braconidae), a parasitoid of B. brassicae. Previously infested plants deprived of the herbivore attracted significantly more parasitoids than infested plants, although aphid odours per se proved to be attractive. Mechanical damage approximating aphid stylet insertion remained without effect on emission of allyl isothiocyanate and on parasitoid response. The unexpected higher parasitoid attraction to previously infested than infested plants is discussed here from the perspective of the plant and the parasitoid, as well as from the herbivore. Results suggest that while the host-finding mechanism of D. rapae has not evolved to allow this parasitoid a discrimination between herbivore-infested and previously infested plants, the herbivore seems able to suppress emission of a key volatile, thereby reducing its own olfactory detectability to its specialised natural antagonist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams R (1995) Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publishing Corporation, Illinois

    Google Scholar 

  • Ahuja I, Rohloff J, Bones AM (2010) Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. A review. Agron Sustain Dev 30:311–348

    Article  Google Scholar 

  • Allison JD, Hare JD (2009) Learned and naive natural enemy responses and the interpretation of volatile organic compounds as cues or signals. New Phytol 184:768–782

    Article  CAS  PubMed  Google Scholar 

  • Bede JC, Musser RO, Felton GW, Korth KL (2006) Caterpillar herbivory and salivary enzymes decrease transcript levels of Medicago truncatula genes encoding early enzymes in terpenoid biosynthesis. Plant Mol Biol 60:519–531

    Article  CAS  PubMed  Google Scholar 

  • Bernasconi Ockroy ML, Turlings TJC, Edwards PJ, Fritzsche-Hoballah ME, Ambrosetti L, Bassetti P, Dorn S (2001) Response of natural populations of predators and parasitoids to artificially induced volatile emissions in maize plants (Zea mays L.). Agric For Entomol 3:201–209

    Article  Google Scholar 

  • Bertschy C, Turlings TCJ, Bellotti AC, Dorn S (1997) Chemically-mediated attraction of three parasitoid species to mealybug-infested cassava leaves. Fla Entomol 80:383–395

    Article  Google Scholar 

  • Blackman RL, Eastop VF (2000) Aphids on the world’s crops, an identification and information guide. The Natural History Museum, London

    Google Scholar 

  • Blande J, Pickett J, Poppy G (2007) A comparison of semiochemically mediated interactions involving specialist and generalist Brassica-feeding aphids and the braconid parasitoid Diaeretiella rapae. J Chem Ecol 33:767–779

    Article  CAS  PubMed  Google Scholar 

  • Bradburne RP, Mithen R (2000) Glucosinolate genetics and the attraction of the aphid parasitoid Diaeretiella rapae to Brassica. Proc R Soc Lond B Biol Sci 267:89–95

    Article  CAS  Google Scholar 

  • Bruinsma M, Posthumus MA, Mueller MJ, van Loon JJA, Dicke M (2009) Jasmonic acid-induced volatiles of Brassica oleracea attract parasitoids: effects of time and dose, and comparison with induction by herbivores. J Exp Bot 60:2575–2587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dewulf J, Van Langenhove H, Everaert P (1999) Determination of Henry’s law coefficients by combination of the equilibrium partitioning in closed systems and solid-phase microextraction techniques. J Chromatogr A 830:353–363

    Article  CAS  Google Scholar 

  • Dicke M (1999) Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods? Entomol Exp Appl 91:131–142

    Article  CAS  Google Scholar 

  • Dicke M, van Poecke RMP, de Boer JG (2003) Inducible indirect defence of plants: from mechanisms to ecological functions. Basic Appl Ecol 4:27–42

    Article  CAS  Google Scholar 

  • Du YJ, Poppy GM, Powell W (1996) Relative importance of semiochemicals from first and second trophic levels in host foraging behavior of Aphidius ervi. J Chem Ecol 22:1591–1605

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foster SP, Denholm I, Thompson R, Poppy GM, Powell W (2005) Reduced response of insecticide-resistant aphids and attraction of parasitoids to aphid alarm pheromone; a potential fitness trade-off. Bull Ento Res 95:37–46

    CAS  Google Scholar 

  • Girling R, Hassall M, Turner J, Poppy G (2006) Behavioral responses of the aphid parasitoid Diaeretiella rapae to volatiles from Arabidopsis thaliana induced by Myzus persicae. Entomol Exp Appl 120:1–9

    Article  Google Scholar 

  • Grasswitz TR, Paine TD (1993) Effect of experience on in-flight orientation to host-associated cues in the generalist parasitoid Lysiphlebus testaceipes. Entomol Exp Appl 68:219–229

    Article  Google Scholar 

  • Gutbrodt B, Dorn S, Unsicker SB, Mody K (2012) Species-specific responses of herbivores to within-plant and environmentally mediated between-plant variability in plant chemistry. Chemoecology 22:101–111

    Article  Google Scholar 

  • Hoballah ME, Turlings TCJ (2005) The role of fresh versus old leaf damage in the attraction of parasitic wasps to herbivore-induced maize volatiles. J Chem Ecol 31:2003–2018

    Article  CAS  PubMed  Google Scholar 

  • Hopkins RJ, van Dam NM, van Loon JJA (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83

    Article  CAS  PubMed  Google Scholar 

  • Kazana E, Pope TW, Tibbles L, Bridges M, Pickett JA, Bones AM, Powell G, Rossiter JT (2007) The cabbage aphid: a walking mustard oil bomb. Proc R Soc B 274:2271–2277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kessler A, Heil M (2011) The multiple faces of indirect defences and their agents of natural selection. Funct Ecol 25:348–357

    Article  Google Scholar 

  • Klaiber J, Najar-Rodriguez AJ, Dialer E, Dorn S (2013a) Elevated carbon dioxide impairs the performance of a specialized parasitoid of an aphid host feeding on Brassica plants. Biol Control 66:49–55

    Article  CAS  Google Scholar 

  • Klaiber J, Najar-Rodriguez AJ, Piskorski R, Dorn S (2013b) Plant acclimation to elevated CO2 affects important plant functional traits, and concomitantly reduces plant colonization rates by an herbivorous insect. Planta 237:29–42

    Article  CAS  PubMed  Google Scholar 

  • Kugimiya S, Shimoda T, Tabata J, Takabayashi J (2010) Present or past herbivory: a screening of volatiles released from Brassica rapa under caterpillar attacks as attractants for the solitary parasitoid, Cotesia vestalis. J Chem Ecol 36(6):620–628

    Article  CAS  PubMed  Google Scholar 

  • Lawrence SD, Novak NG, Ju CJT, Cooke JEK (2008) Potato, Solanum tuberosum, defense against Colorado potato beetle, Leptinotarsa decemlineata (Say): microarray gene expression profiling of potato by Colorado potato beetle regurgitant treatment of wounded leaves. J Chem Ecol 34:1013–1025

    Article  CAS  PubMed  Google Scholar 

  • Loughrin JH, Manukian A, Heath RR, Turlings TCJ, Tumlinson JH (1994) Diurnal cycle of emission of induced volatile terpenoids herbivore-injured cotton plants. Proc Natl Acad Sci USA 91(25):11836–11840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mathur V, Tytgat TG, Hordijk CA, Harhangi HR, Jansen JJ, Reddy AS, Harvey JA (2013) An ecogenomic analysis of herbivore-induced plant volatiles in Brassica juncea. Mol Ecol 22:6179–6196

    Article  PubMed  Google Scholar 

  • Mattiacci L, Rocca BA, Scascighini N, D’Alessandro M, Hern A, Dorn S (2001) Systemically induced plant volatiles emitted at the time of “danger”. J Chem Ecol 27:2233–2252

    Article  CAS  PubMed  Google Scholar 

  • Micha SG, Kistenmacher S, Molck G, Wyss U (2000) Tritrophic interactions between cereals, aphids and parasitoids: discrimination of different plant-host complexes by Aphidius rhopalosiphi (Hymenoptera: Aphidiidae). Eur J Entomol 97:539–543

    Article  Google Scholar 

  • Musser RO, Hum-Musser SM, Eichenseer H, Peiffer M, Ervin G, Murphy B, Felton GW (2002) Herbivory: caterpillar saliva beats plant defences. Nature 416:599–600

    Article  CAS  PubMed  Google Scholar 

  • Najar-Rodriguez A, Orschel B, Dorn S (2013) Season-long volatile emissions from peach and pear trees in situ, overlapping profiles, and olfactory attraction of an oligophagous fruit moth in the laboratory. J Chem Ecol 39:418–429

    Article  CAS  PubMed  Google Scholar 

  • Ngumbi E, Chen L, Fadamiro HY (2009) Comparative GC-EAD responses of a specialist (Microplitis croceipes) and a generalist (Cotesia marginiventris) parasitoid to cotton volatiles induced by two caterpillar species. J Chem Ecol 35:1009–1020

    Article  CAS  PubMed  Google Scholar 

  • Pareja M, Qvarfordt E, Webster B, Mayon P, Pickett J, Birkett M, Glinwood R (2012) Herbivory by a phloem-feeding insect inhibits floral volatile production. PLoS One 7:e31971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pike KS, Stary P, Miller T, Allison D, Graf G, Boydston L, Miller R, Gillespie R (1999) Host range and habitats of the aphid parasitoid Diaeretiella rapae (Hymenoptera: Aphidiidae) in Washington State. Environ Entomol 28:61–71

    Article  Google Scholar 

  • Piskorski R, Dorn S (2010) Early-season headspace volatiles from apple and their effect on the apple blossom weevil Anthonomus pomorum. Chem Biodivers 7:2254–2260

    Article  CAS  PubMed  Google Scholar 

  • Scascighini N, Mattiacci L, D’Alessandro M, Hern A, Rott AS, Dorn S (2005) New insights in analysing parasitoid attracting synomones: early volatile emission and use of stir bar sorptive extraction. Chemoecology 15:97–104

    Article  Google Scholar 

  • Schuman MC, Barthel K, Baldwin IT (2012) Herbivory-induced volatiles function as defence increasing fitness of the native plant Nicotiana attenuata in nature. eLife 1:e00007

    Article  PubMed Central  PubMed  Google Scholar 

  • Schwartzberg EG, Böröczky K, Tumlinson JH (2011) Pea aphids, Acyrthosiphon pisum, suppress induced plant volatiles in broad bean, Vicia faba. J Chem Ecol 37:1055–1062

    Article  CAS  PubMed  Google Scholar 

  • Taveira M, Fernandes F, Guedes de Pinho P, Andrade PB, Pereira JA, Valentão P (2009) Evolution of Brassica rapa var. rapa L. volatile composition by HS-SPME and GC/IT-MS. Microchem J 93:140–146

    Article  CAS  Google Scholar 

  • Turlings TCJ, Wäckers F (2004) Recruitment of predators and parasitoids by herbivore-injured plants. In: Cardé RT, Millar J (eds) Advances in insect chemical ecology. Cambridge University Press, Cambridge, pp 21–75

    Chapter  Google Scholar 

  • Vallat A, Dorn S (2005) Changes in volatile emissions from apple trees and associated response of adult female codling moths over the fruit-growing season. J Agr Food Chem 53:4083–4090

    Article  CAS  Google Scholar 

  • Walling LL (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol 146:859–866

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Winde I, Wittstock U (2011) Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Phytochem 72:1566–1575

    Article  CAS  Google Scholar 

  • Wittstock U, Kliebenstein DJ, Lambrix V, Reichelt M, Gershenzon J (2003) Glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores. Recent Adv Phytochem 37:101–125

    Article  CAS  Google Scholar 

  • Zhang P-J, Xu C-X, Zhang J-M, Lu Y-B, Wei J-N, Liu Y-Q, David A, Boland W, Turlings TCJ (2013) Phloem-feeding whiteflies can fool their host plants, but not their parasitoids. Funct Ecol 27:1304–1312

    Article  Google Scholar 

Download references

Acknowledgments

We thank Brittany Hawkins-Orschel and Maya Senn for help with the experiments, Duncan Hedderley for statistical advice, and Kathrin Tschudi-Rein, Jana Collatz and two anonymous reviewers for useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana J. Najar-Rodriguez.

Additional information

Handling Editor: Michael Heethoff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najar-Rodriguez, A.J., Friedli, M., Klaiber, J. et al. Aphid-deprivation from Brassica plants results in increased isothiocyanate release and parasitoid attraction. Chemoecology 25, 303–311 (2015). https://doi.org/10.1007/s00049-015-0199-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-015-0199-0

Keywords

Navigation