Skip to main content
Log in

Synthesis, biological screening, POM, and 3D-QSAR analyses of some novel pyrazolic compounds

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of new pyrazolic heterocyclic compounds were prepared in good and excellent yields and characterized by proton and carbon nuclear magnetic resonance, infrared, and mass spectroscopy studies. These products were screened in vitro against three bacterial pathogens, namely Bacillus subtilis, Micrococcus luteus, and Escherichia coli and antifungal potential, against Fusarium oxysporum f.sp.albedinis. A considerable and excellent activity was recorded with respect to the two studied microorganisms. A good correlation was obtained between the experimental results and the theoretical predictions of bioavailability using Petra/Osiris/Molinspiration suite (Petra/Osiris/Molinspiration containing Lipinski’s rule-of-five). The quantitative structure activity relationship approach has been analyzed to support the Petra/Osiris/Molinspiration results and composite indexes of some quantum chemical parameters were constructed in order to characterize the inhibition performance of the tested molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Scheme 2

Similar content being viewed by others

References

  • Abrigach F, Khoutoul M, Benchat N, Radi S, Draoui N, Feron O, Riant O, Touzani R (2014) Library of synthetic compounds based on pyrazole unit: design and screening against breast and colorectal cancer. Lett Drug Des Discov 11:1010–1016

    Article  CAS  Google Scholar 

  • Al Houari G, Kerbal A, Bennani B, Baba MF, Daoudi M, Ben Hadda T (2008) Drug design of new antitubercular agents: 1,3-dipolar cycloaddition reaction of arylnitriloxides and 3-para-methoxybenzylidene-isochroman-4-ones. Arkivoc 12:42–50

    Google Scholar 

  • Bailey DM, Hansen PE, Hlavac AG, Baizman ER, Pearl J, Defelice AF, Feigenson ME (1985) 3,4-Diphenyl-1H-pyrazole-1-propanamine antidepressants. J Med Chem 28:256–260

    Article  CAS  PubMed  Google Scholar 

  • Bayrak H, Demirbas A, Karaoglu SA, Demirbas N (2009) Synthesis of some new 1,2,4-triazoles, their Mannich and Schiff bases and evaluation of their antimicrobial activities. Eur J Med Chem 44:1057–1066

    Article  CAS  PubMed  Google Scholar 

  • Ben Hadda T, Fathi J, Chafchaouni I, Masand V, Charrouf Z, Chohan ZH, Jawarkar R, Fergoug T, Warad I (2013) Computational POM and 3D-QSAR evaluation of experimental in vitro HIV-1-Integrase inhibition of amide-containing diketoacids. Med Chem Res 22:1456–1464

    Article  CAS  Google Scholar 

  • Bouabdallah I, M’barek LA, Zyad A, Ramadan A, Zidane I, Melhaoui A (2006) Anticancer effect of three pyrazole derivatives. Nat Prod Res 20:1024–1030

    Article  CAS  PubMed  Google Scholar 

  • Boussalah N, Touzani R, Bouabdallah I, El Kadiri S, Ghalem S (2009) Synthesis, structure and catalytic properties of tripodal amino-acid derivatized pyrazole-based ligands. J Mol Catal A Chem 306:113–117

    Article  CAS  Google Scholar 

  • Boussalah N, Touzani R, Souna F, Himri I, Bouakka M, Hakkou A, Ghalem S, El Kadiri S (2013) Antifungal activities of amino acid ester functionalpyrazolyl compounds against Fusarium oxysporum f.sp.albedinis and Saccharomyces cerevisiae yeast. J Saudi Chem Soc 17:17–21

    Article  CAS  Google Scholar 

  • Chu CK, Cutler J (1986) Chemistry and antiviral activities of acyclonucleosides. J Heterocycl Chem 23:289–319

    Article  CAS  Google Scholar 

  • Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) Development and use of quantum mechanical molecular models. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  • Douglas SJ, Jie JL (2007) The Art of drug synthesis. Wiley, Hoboken, NJ

    Google Scholar 

  • Dvoretzky R, Holmes G (1950) Formaldehyde condensation in the pyrazole series. J Org Chem 15:1285–1288

    Article  CAS  Google Scholar 

  • El Kodadi M, Malek F, Ramdani A (2004) 1-(4-{[(3,5-dimethyl-1H-pyrazol-1-yl)methyl] amino} phenyl) ethanone. Molbank 1:M369

    Article  Google Scholar 

  • El-youbi M, Benabbes R, Lahmass I, Abrigach F, Khoutoul M, Benchat N, Bouakka M, Touzani R, Saalaoui E (2015) Antibacterial and antifungal activities of new pyrazolic compounds. Moroccan J Biol 12:9–13

    Google Scholar 

  • Ertl P, Rohde B, Selzer P (2003) Fast calculation of molecular Polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43:3714–3717

    Article  Google Scholar 

  • Fang B, Cheng HZ, Xian CR (2010) Synthesis and biological activities of novel amine-derived bis-azoles as potential antibacterial and antifungal agents. Eur J Med Chem 45:4388–4398

    Article  CAS  PubMed  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken B, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski KG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT

    Google Scholar 

  • Goodarzi M, Freitas MP, Ghasemi N (2010) QSAR studies of bioactivities of 1-(azacyclyl)-3-arylsulfonyl-1H-pyrrolo[2,3-b]pyridines as 5-HT6 receptor ligands using physicochemical descriptors and MLR and ANN-modeling. Eur J Med Chem 45:3911–3915

    Article  CAS  PubMed  Google Scholar 

  • Haufel J, Breitmaier E (1974) Synthesis of pyrazolo heteroaromatic compounds by means of 5-amino-3-methyl-l-phenylpyrazole-4-carbaldehyde. Angew Chem 13:604–604

    Article  Google Scholar 

  • Janus SL, Magdif AZ, Erik PB, Claus N (1999) Synthesis of triazenopyrazole derivatives as potential inhibitors of HIV-1. Monatsh Chem 130:1167–1174

    Google Scholar 

  • Khoutoul M, Abrigach F, Zarrouk A, Benchat N, Lamsayah M, Touzani R (2015) New nitrogen donor pyrazolic ligands for an excellent liquid–liquid extraction of Fe2+ metal ion in aqueous solution with theoretical study. Res Chem Intermed 41:3319–3334

    Article  CAS  Google Scholar 

  • Luilo GB, Cabaniss SE (2010) Quantitative structure−property relationship for predicting chlorine demand by organic molecules. Environ Sci Technol 44:2503–2508

    Article  CAS  PubMed  Google Scholar 

  • Manfredini S, Baraldi PG, Bazzanini R, Durini E, Vertuani S, Pani A, Marceddu T, Demontis F, Vargiu L, La Colla P (2000) Pyrazole related nucleosides 5. Synthesis and biological activity of 2′-deoxy-2′,3′-dideoxy- and acyclo-analogues of 4-iodo-1-beta-d-ribofuranosyl-3-carboxymethyl pyrazole. Nucleosides Nucleotides Nucleic Acids 19:705–722

    Article  CAS  PubMed  Google Scholar 

  • Michon V, DuPenhoat CH, Tombret F, Gillardin JM, Lepagez F, Berthon L (1995) Preparation, structural analysis and anticonvulsant activity of 3- and 5-aminopyrazole N-benzoyl derivatives. Eur J Med Chem 30:147–155

    Article  CAS  Google Scholar 

  • Nilesh JT, Manish PP (2011) Synthesis, characterization, and antimicrobial evaluation of carbostyril derivatives of 1H-pyrazole. Saudi Pharm J 19:75–83

    Article  Google Scholar 

  • Olajuyigbe OO, Oyedeji O, Adedayo O (2014) Evaluation of the vitro interaction of amoxicillin and cotrimoxazole antibiotics against resistant bacterial strains. J Appl Pharm Sci 4:94–100

    Google Scholar 

  • Papa E, Kovarich S, Gramatica P (2010) QSAR modeling and prediction of the endocrine-disrupting potencies of brominated flame retardants. Chem Res Toxicol 23:946–954

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Lee K, Park S, Ahn B, Lee JC, Cho HY, Lee KI (2005) Identification of antitumor activity of pyrazole oxime ethers. Bioorg Med Chem Lett 15:3307–3312

    Article  CAS  PubMed  Google Scholar 

  • Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40

    Article  CAS  PubMed  Google Scholar 

  • Pimerova EV, Voronina EV (2001) Antimicrobial activity of pyrazoles and pyridazines obtained by interaction of 4-aryl-3-arylhydrazono-2,4-dioxobutanoic acids and their esters with hydrazines. Pharm Chem J 35:602–604

    Article  Google Scholar 

  • Pourbasheer E, Riahi S, Ganjali MR, Norouzi P (2010) Quantitative structure–activity relationship (QSAR) study of interleukin-1 receptor associated kinase 4 (IRAK-4) inhibitor activities by the genetic algorithm and multiple linear regression (GA-MLR) method. J Enzyme Inhib Med Chem 25:844–853

    Article  CAS  PubMed  Google Scholar 

  • Solomon C, Breckon T (2011) Fundamentals of digital image processing: A practical approach with examples in Matlab. John Wiley & Sons, Ltd., Publication.

  • Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D, Ertl P, Palyulin VA, Radchenko EV, Zefirov NS, Makarenko AS, Tanchuk VY, Prokopenko VV (2005) Virtual computational chemistry laboratory - design and description. J Comput Aid Mol Des 19:453–463

    Article  CAS  Google Scholar 

  • Tewari AK, Mishra A (2001) Synthesis and anti-inflammatory activities of N4,N5-disubstituted-3-methyl-1H-pyrazolo[3,4-c]pyridazines. Bioorg Med Chem 9:715–718

    Article  CAS  PubMed  Google Scholar 

  • Wallace D (2009) Rapid culture methods for the microbiological examination of foods. Food Sci Technol 23:44–45

    Google Scholar 

  • Wiley RH, Wiley P (1964) Chemistry of heterocyclic compounds: pyrazolones, pyrazolidones, and derivatives. Wiley, New York, Vol 20

    Book  Google Scholar 

  • Wustrow DJ, Capiris T, Rubin R, Knobelsdorf JA, Akunne H, Davis MD, MacKenzie R, Pugsley TA, Zoski KT, Heffner TG, Wise LD (1998) Pyrazolo[1,5a]pyrimidine CRF-1 receptor antagonists. Bioorg Med Chem Lett 8:2067–2070

    Article  CAS  PubMed  Google Scholar 

  • Yildirim I, Ozdemir N, Akçamur Y, Dinçer M, Andaç O (2005) 4-Benzoyl-1,5-diphenyl-1H-pyrazole-3-carboxylic acid methanol solvate. Acta Cryst E61:256–258

    Google Scholar 

Download references

Acknowledgements

The authors want to thank professor Olivier Riant from UNIVERSITE CATHOLIQUE DE LOUVAIN, Institut de la Matière Condensée et des Nanosciences (IMCN), Pôle Molécules, Solides et Réactivité (MOST), the CUD of Belgium and the CNRST of Morocco for its generous support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Abrigach or R. Touzani.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrigach, F., Karzazi, Y., Benabbes, R. et al. Synthesis, biological screening, POM, and 3D-QSAR analyses of some novel pyrazolic compounds. Med Chem Res 26, 1784–1795 (2017). https://doi.org/10.1007/s00044-017-1888-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-017-1888-8

Keywords

Navigation