Skip to main content

Advertisement

Log in

In silico investigation of morpholines as novel class of trypanosomal triosephosphate isomerase inhibitors

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Human African trypanosomiasis, also known as sleeping sickness, is caused by the single-celled kinetoplastid parasite Trypanosoma brucei transmitted to humans by infected tsetse flies. The disease threatens millions of people. Currently available treatment options are faced with some important challenges. In this work, a total of eighty-seven (87) morpholine derivatives were evaluated for drug-likeness based on Lipinski’s rule of five and their ability to inhibit the activities of trypanosomal triosephosphate isomerase was assessed by molecular docking and calculation of free energy of binding. Analysis of the results revealed that 97.7 % of the dataset complied with Lipinski’s criteria for a molecule to be orally bioavailable. Also, 50.0 % of the studied compounds had a good total polar surface area profile, a parameter which is of great importance for the treatment of stage two Trypanosoma infections. Docking studies showed that all the dataset demonstrated affinity for triosephosphate isomerase. Moreover, six morpholines scored higher than the co-crystallized inhibitor of triosephosphate isomerase (2-phosphoglycerate). These derivatives inhibited the activity of triosephosphate isomerase by making significant interactions with Glu 167, Val 214, 233, Asn 11, Lys 13, Ser 213, Leu 232, Ile 172, Gly 211, 212, 234, 235 and His 92 in the active site of the protein. Furthermore, besides the acceptable pharmacokinetic profiles of the six morpholines, they also showed inhibitory potencies toward four other validated antitrypanosomal drug targets. In view of the foregoing findings, we propose that the six morpholine derivatives be given worthwhile attention to develop them into novel trypanocides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asmaa HS (2013) Synthesis of some acetylenic morpholine derivatives via grignard reactions. Raf J Sci 24:31–38

    Google Scholar 

  • Bakker BM, Michels PA, Opperdoes FR, Westerhoff HV (1997) Glycolysis in bloodstream for Trypanosoma brucei can be understood in terms of the kinetic of the glycolytic enzymes. J Biol Chem 272:3207–3215

    Article  CAS  PubMed  Google Scholar 

  • Bakker BM, Michels PM, Opperdoes FR, Westerhoff HV (1999) What controls glycolysis in bloodstream form trypanosoma brucei? J Biol Chem 274:14551–14559

    Article  CAS  PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caceres AJ, Michels PA, Hannaert V (2010) Genetic validation of aldolase and glyceraldehyde-3-phosphate dehydrogenase as drug targets in Trypanosoma brucei. Mol Biochem Parasitol 169:50–54

    Article  CAS  PubMed  Google Scholar 

  • Canning P, Rea D, Morty R, Fulop V (2013) Ologopeptidase B from Trypanosoma brucei with covalently bound antipain-closed form. PLoS One 8:79349

    Article  Google Scholar 

  • Cao R, Chen CKM, Guo RT, Wang AHJ, Oldfield E (2008) Structures of a potent phenylalkyl bisphosphonate inhibitor bound to farnesyl and geranylgeranyl diphosphate synthases. Proteins 73:431–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chemical Computing Group (2010) Molecular Operating Environment (MOE) software

  • Chiarelli LR, Morera SM, Bianchi P, Fermo E, Zanella A, Galizzi A, Valentini G (2012) Molecular insight on pathogenic effects of mutations causing phosphoglycerate kinase deficiency. PLoS One 7(2):e32065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi J, Lee JO, Kim MS, Shin JEN, Chun KH (2008) Preparation of morpholine-2-one and 1,4-Oxazepan-2-one derivatives by cyclization reaction between N-Bts amino alcohol and chloroacetyl chloride. Bull Korean Chem Soc 29:1443–1444

    Article  CAS  Google Scholar 

  • Dion ME, Agler M, Milner JA (1997) S-allyl cysteine inhibits nitrosomorpholine formation and bioactivation. Nutr Cancer 28(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Maldonado E, Perez-montford R, Garza-Yamos G, De Gomez-Puyou MT, Gomez-Puyou A, Rodriguez-Romero A (1999) Crystal structure of triosephosphate isomerase from trypanosoma cruzi in hexane. Proc Natl Acad Sci USA 96:10062–10067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghose AK, Herbertz T, Hudkins RL, Dorsey BD, Mallamo JP (2012) Knowledge-based central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. Neuroscience 3:50–68

    CAS  Google Scholar 

  • Halgren TA (1996) Merck molecular force field. J Comput Chem 17:490–641

    Article  CAS  Google Scholar 

  • Henzi V, Reichling D, Helm S, MacDermott A (1992) L-proline activities glutamate and glycine receptors in cultured rat dorsal horn neurons. Mol Pharmacol 41:793–801

    CAS  PubMed  Google Scholar 

  • Hoet S, Opperdoes F, Brun R, Quetin-Leclercq J (2004) Natural products active against African trypanosomes: a step towards new drugs. Nat Prod Rep 21:353–364

    Article  CAS  PubMed  Google Scholar 

  • Kaiser M, Bray MA, Cal M, Trunz BB, Torreele E, Brun R (2011) Antitrypanosomal activity of fexinidazole, a new oral nitroimidazole drug candidate for treatment of sleeping sickness. Antimicrob Agents Chemother 55:5602–5608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klebe G (2006) Virtual ligand screening strategies; perspective and limitations. Drug Discov Today 11:580–594

    Article  CAS  PubMed  Google Scholar 

  • Kubinyi H (1998) Structure-based design of enzyme inhibitors and receptors ligands. Curr Opin Drug Discov Dev 1:4–15

    CAS  Google Scholar 

  • Kuettel S, Zambon A, Kaiser M, Brun R, Scapozza L, Perozzo R (2007) Synthesis and evaluation of antiparasitic activities of New 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine derivatives. J Med Chem 50:5833–5839

    Article  CAS  PubMed  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  • Matthew LL, Brandon RR, John PW (2009) A new strategy for the synthesis of substituted morpholines. J Org Chem 74:5107–5110

    Article  Google Scholar 

  • Nickbarg EB, Davenport RC, Petsko GA, Knowles JR (1988) Triosephosphate isomerase: removal of a putatively electrophilic histidine residue results in a subtle change in catalytic mechanism. Biochemistry 27:5948–5960

    Article  CAS  PubMed  Google Scholar 

  • Ntie-Kang F, Lifongo LL, Judson PN, Sippl W, Efange SMN (2014) How “drug-like” are naturally occurring anti-cancer compounds? J Mol Model 20:2069

    Article  PubMed  Google Scholar 

  • Ntie-Kang F, Nwodo NJ, Ibezim A, Simoben CV, Karaman B, Ngwa VF, Sippl W, Adikwu MU, Mbaze LM (2014) Molecular modeling of potential anticancer agents from African medicinal plants. J Chem Inf Model 54:2433–2450

    Article  CAS  PubMed  Google Scholar 

  • Nurnabi M, Ismail M (2007) Synthesis of biologically important chiral morpholine derivatives. Bangladesh J Sci Ind Res 42:135–146

    Article  CAS  Google Scholar 

  • Nwaka S, Hudson A (2006) Innovation lead discovery strategies for tropical diseases. Nat Rev Drug Discov 5:942–955

    Article  Google Scholar 

  • Noble ME, Verlinde CL, Groendijk H, Kalk KH, Wierenga RK, Hol WG (1991) Crystallographic and molecular modeling studies on trypanosomal triosephosphate isomerase: a critical assessment of the predicted and observed structures of the complex with 2-phosphoglycerate. J Med Chem 34:2709–2718

    Article  CAS  PubMed  Google Scholar 

  • Ogungbe IV, Setzer WN (2009) Comparative molecular docking of antitrypanosomal natural products into multiple Trypanosoma brucei drug targets. Molecules 14:1513–1536

    Article  CAS  PubMed  Google Scholar 

  • Oprea TI (2002) Current trends in lead discovery: are we looking for the appropriate properties? J Comput Aided Mol Des 16:325–334

    Article  CAS  PubMed  Google Scholar 

  • Palm K, Stenberg P, Luthman K, Artursson P (1997) Polar molecular surface properties predict the intestinal absorption of drugs n humans. Pharm Res 14:568–571

    Article  CAS  PubMed  Google Scholar 

  • Sahin D, Bayrak H, Demirbas A, Demirbas N, Karaoglu SA (2012) Design and synthesis of new 1,2,4-triazole derivatives containing morpholine moiety as antimicrobial agents. Turk J Chem 36:411–426

    CAS  Google Scholar 

  • Sanders WJ, Nienaber VL, Lerner CG, McCall JO, Merrick VL, Swanson SJ, Harlan JE, Stoll VS, Stamper GF, Betz SF, Condoski KR, Meadows RP, Severin JM, Walter KA, Magdalinos P, Jakob CG, Wagner R, Beutel BA (2004) DHNA complex with 2-amino-5-bromo-3-hydroxyl-6-phenylpyrimidine. J Med Chem 47:1709–1718

    Article  CAS  PubMed  Google Scholar 

  • Setzer WN, Ogungbe VI (2012) In silico investigation of antitrypanosomal phytochemicals from Nigerian medicinal plants. PLoS Negl Trop Dis 6(7):e1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart KD, Brun R, Croft SL, Fairlamb AH, Gurtler RE, McKerrow JH, Reed S, Tarleton RL (2008) Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest 118:1301–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teague SJ, Davis AM, Leeson PD, Opea TI (1999) The design of leadlike combinatorial libraries. Angew Chem Int Ed 38:3743–3748

    Article  CAS  Google Scholar 

  • World Health Organisation (2013) Fact sheet N°259: trypanosomiasis, human African (sleeping sickness). Accessed on 28 February 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akachukwu Ibezim.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibezim, A., Nwodo, N.J., Nnaji, N.J. et al. In silico investigation of morpholines as novel class of trypanosomal triosephosphate isomerase inhibitors. Med Chem Res 26, 180–189 (2017). https://doi.org/10.1007/s00044-016-1739-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-016-1739-z

Keywords

Navigation