Skip to main content
Log in

In silico molecular docking of niloticin with acetylcholinesterase 1 (AChE1) of Aedes aegypti L. (Diptera: Culicidae): a promising molecular target

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Synthetic insecticides used in mosquito control program are harmful to environment and also affect other associated organisms. As a choice, plant-based natural compounds proved to be a good alternative to synthetic insecticides. In a study, we had reported niloticin (C30H48O3) from the plant Limonia acidissima L. was effective and disturbed the larval growth of A. aegypti. The main molecular target for many commercially available synthetic mosquitocides is acetylcholinesterase (AChE), which plays a major role in larval knockdown/resistant mechanisms. AChE1 is a serine protease, which fulfills the physiological function of neurotransmitter hydrolysis at synapses. In the present study, we performed molecular docking studies with acetylcholinesterase 1 (AChE1) of A. aegypti with niloticin (C30H48O3) and compared with commercially available chemical larvicidal compound temephos (C16H20O6P2S3). The docking results revealed that the binding affinities and energy values of niloticin (−8.4 kcal/mol) were found to be significantly higher than temephos (−4.75 kcal/mol). Both niloticin (C30H48O3) and temephos (C16H20O6P2S3) showed the same binding residues (THR’58 and HIS’62) on AChE1. Further, niloticin produced least binding energy (−8.4 kcal/mol), good inhibition constant value (695.18 μM) and high ligand efficiency (0.25) than temephos, suggesting that niloticin (C30H48O3) could be used against the larvae of A. aegypti as an effective AChE1 inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

AChE:

Acetylcholinesterase

AChE1:

Acetylcholinesterase 1

DEET:

N,N-Diethyl-m-toluamide

ASN 76:

Asparagine 76

HIS 62:

Histidine 62

THR 58:

Threonine 58

LC:

Lethal concentration

ppm:

Parts per million

References

  • Alout H, Labbé P, Berthomieu A, Djogbénou L, Leonetti JP, Fort P, Weill M (2012) Novel AChE inhibitors for sustainable insecticide resistance management. PLoS One 7(10):e47125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW (1990) Lipman DJ Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Ansari MA, Mittal PK, Razdan RK, Dhiman RC, Kumar A (2004) Evaluation of pirimiphos-methyl (50 % EC) against the immature of Anopheles stephensi/An. culicifacies (malaria vectors) and Culex quinquefasciatus (vector of bancroftian filariasis). J Vector Borne Dis 41:10–16

    CAS  PubMed  Google Scholar 

  • Aygun D, Doganay Z, Altintop L, Guven H, Onar M, Deniz T, Sunter T (2002) Serum acetylcholinesterase and prognosis of acute organophosphate poisoning. J Toxicol Clin Toxicol 40(7):903–910

    Article  CAS  PubMed  Google Scholar 

  • Blackwell A, Stuart AE, Estambale BA (2003) The repellant and antifeedant activity of oil of Myrica gale against Aedes aegypti mosquitoes and its enhancement by the addition of salicyluric acid. Proc R Coll Phys Edinb 33:209–214

    Google Scholar 

  • Bourguet D, Raymond M, Fournier D, Malcolm CA, Toutant JP, Arpagaus M (1996) Existence of two acetylcholinesterases in the mosquito Culex pipiens (Diptera:Culicidae). J Neurochem 67(5):2115–2123

    Article  CAS  PubMed  Google Scholar 

  • Burfield T, Reekie SL (2005) Mosquitoes, malaria and essential oils. Int J Aroma 15(1):30–41

    Article  CAS  Google Scholar 

  • Cecilia KF, Ravindhran R, Gandhi MR, Reegan AD, Balakrishna K, Ignacimuthu S (2014) Larvicidal and pupicidal activities of ecbolin A and ecbolin B isolated from Ecbolium viride (Forssk.) Alston against Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 113(9):3477–3484

    Article  PubMed  Google Scholar 

  • Choochote W, Chaithong U, Kamsuk K, Jitpakdi A, Tippawangkosol P, Tuetun B, Champakaew D, Pitasawat B (2007) Repellent activity of selected essential oils against Aedes aegypti. Fitoterapia 78(5):359–364

    Article  CAS  PubMed  Google Scholar 

  • Corbel V, Stankiewicz M, Pennetier C, Fournier D, Stojan J, Girard E, Dimitrov M, Molgó J, Hougard JM, Lapied B (2009) Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent DEET. BMC Biol 7:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Costantini C, Badolo A, Ilboudo-Sanogo E (2004) Field evaluation of the efficacy and persistence of insect repellents DEET, IR3535, and KBR 3023 against Anopheles gambiae complex and other Afro-tropical vector mosquitoes. Trans R Soc Trop Med Hyg 98(11):644–652

    Article  CAS  PubMed  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific LLC, San Carlos, CA, USA. http://www.pymol.org

  • Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34:116–118

    Article  Google Scholar 

  • Ffrench-Constant RH, Bonning BC (1989) Rapid microtitre plate test distinguishes insecticide resistant acetylcholinesterase genotypes in the mosquitoes Anopheles albimanus, A. nigerrimus and Culex pipiens. Med Vet Entomol 3:9–16

    Article  CAS  PubMed  Google Scholar 

  • Fournier D, Mutero A (1994) Modification of acetylcholinesterase as a mechanism of resistance to insecticides. Comp Biochem Physiol Part C 108(1):19–31

    Google Scholar 

  • Garcia LS (2010) Malaria. A review. Clin Lab Med 30(1):93–129

    Article  PubMed  Google Scholar 

  • Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annual Rev Entomol 45:371–391

    Article  CAS  Google Scholar 

  • Hemmerter S, Šlapeta J, Beebe NW (2009) Resolving genetic diversity in Australasian Culex mosquitoes: incongruence between the mitochondrial cytochrome c oxidase I and nuclear acetylcholine esterase 2. Mol Phylogenet Evol 50(2):317–325

    Article  CAS  PubMed  Google Scholar 

  • Hendlich M, Rippmann F, Barnickel G (1997) LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. J Mol Graph Model 15(6):359–363, 389

    Article  CAS  PubMed  Google Scholar 

  • Jukic M, Politeo O, Maksimovic M, Milos M, Milos M (2007) In vitro acetylcholinesterase inhibitory properties of thymol, carvacrol and their derivatives thymoquinone and thymohydroquinone. Phytotherapy Res 21(3):259–261

    Article  CAS  Google Scholar 

  • Kakani EG, Bon S, Massoulié J, Mathiopoulos KD (2011) Altered GPI modification of insect AChE improves tolerance to organophosphate insecticides. Insect Biochem Mol Biol 41(3):150–158

    Article  CAS  PubMed  Google Scholar 

  • Khan MT (2009) Molecular interactions of cholinesterases inhibitors using in silico methods: current status and future prospects. Nat Biotechnol 25(5):331–346

    CAS  Google Scholar 

  • Lagarde A, Spinelli S, Tegoni M, He X, Field L, Zhou JJ, Cambillau C (2011) The crystal structure of odorant binding protein 7 from Anopheles gambiae exhibits an outstanding adaptability of its binding site. J Mol Biol 414(3):401–412

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK—a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Laurie AT, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein–ligand binding sites. Bioinformatics 21(9):1908–1916

    Article  CAS  PubMed  Google Scholar 

  • Lavialle-Defaix C, Apaire-Marchais V, Legros C, Pennetier C, Mohamed A, Licznar P, Corbel V, Lapied B (2011) Anopheles gambiae mosquito isolated neurons: a new biological model for optimizing insecticide/repellent efficacy. J Neurosci Methods 200(1):68–73

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Hernandez GY, Thinschmidt JS, Zheng G, Zhang Z, Crooks AP, Dwoskin LP, Papke RL (2009) Selective inhibition of acetylcholine-evoked responses of α7 neuronal nicotinic acetylcholine receptors by novel tris- and tetrakis-azaaromatic quaternary ammonium antagonists. Mol Pharmacol 76(3):652–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662

    Article  CAS  Google Scholar 

  • Muthu C, Reegan AD, Kingsley S, Ignacimuthu S (2012) Larvicidal activity of pectolinaringenin from Clerodendrum phlomidis L. against Culex quinquefasciatus Say and Aedes aegypti L. (Diptera: Culicidae). Parasitol Res 111(3):1059–1065

    Article  PubMed  Google Scholar 

  • Nabeshima T, Mori A, Kozaki T, Iwata Y, Hidoh O, Harada S, Kasai S, Severson DW, Kono Y, Tomita T (2004) An amino acid substitution attributable to insecticide insensitivity of acetylcholinesterase in a Japanese encephalitis vector mosquito, Culex tritaeniorhynchus. Biochem Biophys Res Commun 13:794–801

    Article  Google Scholar 

  • Nathan SS, Hisham A, Jayakumar G (2008) Larvicidal and growth inhibition of the malaria vector Anopheles stephensi by triterpenes from Dysoxylum malabaricum and Dysoxylum beddomei. Fitoterapia 79(2):106–111

    Article  CAS  PubMed  Google Scholar 

  • Nerio LS, Olivero-Verbel J, Stashenko E (2010) Repellent activity of essential oils: a review. Bioresour Technol 101(1):372–378

    Article  CAS  PubMed  Google Scholar 

  • Rattan RS (2010) Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protect 29(9):913–920

    Article  CAS  Google Scholar 

  • Reegan AD, Kinsalin AV, Paulraj MG, Ignacimuthu S (2013) Larvicidal, ovicidal and repellent activities of marine sponge Cliona celata (Grant) extracts against Culex quinquefasciatus Say and Aedes aegypti L. (Diptera: Culicidae). ISRN Entomol 2013:1–8

  • Reegan AD, Kannan RV, Paulraj MG, Ignacimuthu S (2014a) Synergistic effects of essential oil-based cream formulations against Culex quinquefasciatus Say and Aedes aegypti L. (Diptera: Culicidae). J Asia-Pac Entomol 17(3):327–331

    Article  CAS  Google Scholar 

  • Reegan AD, Gandhi MR, Paulraj MG, Balakrishna K, Ignacimuthu S (2014b) Effect of niloticin, a protolimonoid isolated from Limonia acidissima L. (Rutaceae) on the immature stages of dengue vector Aedes aegypti L. (Diptera: Culicidae). Acta Trop 11(139C):67–76

    Article  Google Scholar 

  • Riaz MA, Chandor-Proust A, Dauphin-Villemant C, Poupardin R, Jones CM, Strode C, Régent-Kloeckner M, David JP, Reynaud S (2013) Molecular mechanisms associated with increased tolerance to the neonicotinoid insecticide imidacloprid in the dengue vector Aedes aegypti. Aquat Toxicol 15(126):326–337

    Article  Google Scholar 

  • Rusconi B, Maranhao AC, Fuhrer JP, Krotee P, Choi SH, Grun F, Thireou T, Dimitratos SD, Woods DF, Marinotti O, Walter MF, Eliopoulos E (2012) Mapping the Anopheles gambiae odorant binding protein 1 (AgamOBP1) using modeling techniques, site directed mutagenesis, circular dichroism and ligand binding assays. Biochim Biophys Acta 1824(8):947–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815

    Article  CAS  PubMed  Google Scholar 

  • Sanner MF (1999) Python: a programming language for software integration and development. J Mol Graph Model 17(1):57–61

    CAS  PubMed  Google Scholar 

  • Schüttelkopf AW, van Aalten DM (2004) PRODRG - a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr 60(8):1355–1363

    Google Scholar 

  • Sharma RS, Sharma SN, Kumar A (2003) Susceptibility status of Japanese encephalitis vectors in Kurnool and Mehboobnagar districts of Andhra Pradesh, India. J Commun Dis 35(2):118–122

    CAS  PubMed  Google Scholar 

  • Silva NNS, Silva JRA, Alves CN, Andrade EHA, daSilva JKR, Maia JGS (2014) Acetylcholinesterase inhibitory activity and molecular docking study of 1-nitro-2-phenylethane, the main constituent of Aniba canelilla essential oil. Chem Biol Drug Des 84(2):192–198

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Singh DK (2000) Toxicity to the snail Limnaea acuminata of plant-derived molluscicides in combination with synergists. Pest Manag Sci 56(10):889–898

    Article  CAS  Google Scholar 

  • Tikar SN, Kumar A, Prasad GB, Prakash S (2009) Temephos-induced resistance in Aedes aegypti and its cross-resistance studies to certain insecticides from India. Parasitol Res 105(1):57–63

    Article  CAS  PubMed  Google Scholar 

  • Tsitsanou KE, Thireou T, Drakou CE, Koussis K, Keramioti MV, Leonidas DD, Eliopoulos E, Iatrou K, Zographos SE (2012) Anopheles gambiae odorant binding protein crystal complex with the synthetic repellent DEET: implications for structure-based design of novel mosquito repellents. Cell Mol Life Sci 69(2):283–297

    Article  CAS  PubMed  Google Scholar 

  • Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible and free. J Comput Chem 26(16):1701–1718

    Article  Google Scholar 

  • Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8(2):127–134

    Article  CAS  PubMed  Google Scholar 

  • Weill M, Fort P, Berthomieu A, Dubois MP, Pasteur N, Raymond M (2002) A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is nonhomologous to the ace gene Drosophila. Proc R Soc Lond B 269:2007–2016

    Article  CAS  Google Scholar 

  • WHO (2010) World Malaria Report. World Health Organization, Geneva 204

    Google Scholar 

  • Wink M (2000) Interference of alkaloids with neuroreceptors and ion channels. Stud Nat Prod Chem 21:3–122

    Article  CAS  Google Scholar 

  • Zhu XL, Yu NX, Hao GF, Yang WC, Yang GF (2013) Structural basis of femtomolar inhibitors for acetylcholinesterase subtype selectivity: insights from computational simulations. J Mol Graph Model 41:55–60

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The project was fully financially supported by King Saud University through Vice Deanship of Research Chairs. The authors are thankful to Entomology Research Institute, Loyola College, for providing all the facilities to accomplish the work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Appadurai Daniel Reegan or Savarimuthu Ignacimuthu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Appadurai Daniel Reegan and Antony Stalin have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reegan, A.D., Stalin, A., Paulraj, M.G. et al. In silico molecular docking of niloticin with acetylcholinesterase 1 (AChE1) of Aedes aegypti L. (Diptera: Culicidae): a promising molecular target. Med Chem Res 25, 1411–1419 (2016). https://doi.org/10.1007/s00044-016-1579-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-016-1579-x

Keywords

Navigation