Skip to main content
Log in

Novel pyrrolo[2,3-d]pyrimidines and pyrrolo[2,3-b]pyridines: design, synthesis, and in vivo TNF-α inhibitory activity

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Novel pyrrolo[2,3-d]pyrimidines 5aj, 6aj and pyrrolo[2,3-b]pyridines 7ah; incorporating the common vicinal diaryl motif of tumor necrosis factor-α (TNF-α) inhibitors, were synthesized starting from 2-amino-pyrrole-3-carbonitriles 1ah. The structures of synthesized compounds were elucidated by spectral data (IR, NMR, and MS) and elemental analyses. Representative compounds were evaluated for their ability to inhibit lipopolysaccharide-induced TNF-α production in vivo in rat at 25 mg/kg p.o. Structure activity relationships are described. The pyrrolo[2,3-d]pyrimidines displayed better inhibitory activity than the pyrrolo[2,3-b]pyridines. The most potent among the biologically tested compounds was the pyrrolopyrimidine 5h (N-(4-ethoxyphenyl)-2-(4-oxo-6-phenyl-7-(pyridine-4-yl)-4H-pyrrolo[2,3-d]pyrimidin-3(7H)-yl)acetamide),showing TNF-α inhibitory activity (96 %) comparable to that of dexamethasone (91 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Scheme 2

Similar content being viewed by others

References

  • Anzini M, Di Capua A, Brogi S, Valenti S, Rovini M, Giuliani G, Cappelli A, Vomero S, Chiasserini L, Sega A, Poce G, Giorgi G, Calderone V, Martelli A, Testai L, Sautebin L, Rossi A, Pace S, Ghelardini C, Di CesareMannelli L, Benetti V, Giordani A, Anzellotti P, Dovizio M, Patrignani P, Biava M (2013) Novel analgesic/anti-inflammatory agents: 1,5-diarylpyrrole nitrooxyalkyl ethers and related compounds as cyclooxygenase-2 inhibiting nitric oxide donors. J Med Chem 56:3191–3206

    Article  CAS  PubMed  Google Scholar 

  • Biava M, Porretta GC, Poce G, Battilocchio C, Alfonso S, Rovini M, Valenti S, Giorgi G, Calderone V, Martelli A, Testai L, Sautebin L, Rossi A, Papa G, Ghelardini C, Di CesareMannelli L, Giordani A, Anzellotti P, Bruno A, Patrignani P, Anzini M (2011) Novel analgesic/anti-inflammatory agents: diarylpyrrole acetic esters endowed with nitric oxide releasing properties. J Med Chem 54:7759–7771

    Article  CAS  PubMed  Google Scholar 

  • Brugel TA, Maier JA, Clark MP, Sabat M, Golebiowski A, Brookland RG, Laufersweiler MJ, Laughlin SK, VanRens JC, De B, Hsieh LC, Mekel MJ, Janusz MJ (2006) Development of N-2,4-pyrimidine-N-phenyl-N′-phenyl ureas as inhibitors of tumor necrosis factor alpha (TNF-α) synthesis. Part 1. Bioorg Med Chem Lett 16:3510–3513

    Article  CAS  PubMed  Google Scholar 

  • Chin JE, Hatfield CA, Winterrowd GE (1999) Preclinical evaluation of anti-inflammatory activities of the novel pyrrolopyrimidine PNU-142731A, a potential treatment for asthma. J Pharmacol Exp Ther 290:188–195

    CAS  PubMed  Google Scholar 

  • Corain B, Basato M (1993) Metal-catalyzed carbon-carbon bond formation in the reaction of β-dicarbonyls with nitriles. J Mol Catal 81:133–155

    Article  CAS  Google Scholar 

  • Corain B, Longato B, Basato M, Angeletti R (1986) Tin(IV) chloride-promoted reactivity of β-dicarbonyls with non-electrophilically activated nitriles: role of the metal center. Inorganica Chim Acta 117:39–44

    Article  CAS  Google Scholar 

  • Cuadrado A, Nebreda AR (2010) Mechanisms and functions of p38 MAPK signaling. Biochem J 429:403–417

    Article  CAS  PubMed  Google Scholar 

  • Cuenda A, Rousseau S (2007) P38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 1773:1358–1375

    Article  CAS  PubMed  Google Scholar 

  • El-Saghier AMM (2002) A simple synthesis of some new thienopyridine and thienopyrimidine derivatives. Molecules 7:756–766

    Article  CAS  Google Scholar 

  • Fujita M, Hirayama T, Ikeda N (2002a) Design, synthesis and bioactivities of novel diarylthiophenes: inhibitors of tumor necrosis factor-α (TNF-α) production. Bioorg Med Chem 10:3113–3122

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Seki T, Ikeda N (2002b) Synthesis and bioactivities of novel bicyclic thiophenes and 4,5,6,7-tetrahydrothieno[2,3-c]pyridines as inhibitors of tumor necrosis factor-alpha (TNF-alpha) production. Bioorg Med Chem Lett 12:1897–1900

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Seki T, Ikeda N (2002c) Synthesis and bioactivities of novel 4,5,6,7-tetrahydrothieno[2,3-c]pyridines as inhibitors of tumor necrosis factor-alpha (TNF-alpha) production. Bioorg Med Chem Lett 12:1607–1611

    Article  CAS  PubMed  Google Scholar 

  • Hall A, Brown SH, Chessell IP, Chowdhury A, Clayton NM, Coleman T, Giblin GM, Hammond B, Healy MP, Johnson MR, Metcalf A, Michel AD, Naylor A, Novelli R, Spalding DJ, Sweeting J (2007) 1,5-Biaryl pyrrole derivatives as EP1 receptor antagonists: structure–activity relationships of 4- and 5-substituted benzoic acid derivatives. Bioorg Med Chem Lett 17:732–735

    Article  CAS  PubMed  Google Scholar 

  • Hilmy KMH (2004) Synthesis of new pyrrolo[2,3-b]pyridines as a potent inhibitor of tumor necrosis factor alpha. Arch Pharm Med Chem 337:15–19

    Article  Google Scholar 

  • Hilmy KMH (2006) Synthesis of non-nucleosides: 7- and 1,3-substituents of new pyrrolo[2,3-d]pyrimidin-4-ones on antiviral activity. Arch Pharm Chem Life Sci 339:174–181

    Article  CAS  Google Scholar 

  • Hilmy KM, Pedersen EB (1989) Nitriles in heterocyclic synthesis: a novel synthesis of 2-amino-3-pyrrolecarbonitriles. Liebigs Ann Chem 1145–1146

  • Hilmy KMH, Khalifa MMA, Hawata MA, Keshk RMA, El-Torgman A (2010) Synthesis of new pyrrolo[2,3-d]pyrimidine derivatives as antibacterial and antifungal agents. Eur J Med Chem 45:5243–5250

    Article  PubMed  Google Scholar 

  • Hu H, Song L, Fang Q, Zheng J, Meng Z, Luo Y (2011) Tin(IV) chloride-promoted one-pot synthesis of novel tacrine analogues. Molecules 16:1878–1887

    Article  CAS  PubMed  Google Scholar 

  • Jackson PF, Bullington JL (2002) Pyridinylimidazole based p38 MAP kinase inhibitors. Curr Top Med Chem 2:1011–1020

    Article  CAS  PubMed  Google Scholar 

  • Kaminska B (2005) MAPK signaling pathways as molecular targets for anti-inflammatory therapy from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta 1754:253–262

    Article  CAS  PubMed  Google Scholar 

  • Lee JC, Kassis S, Kumar S, Badger A, Adams JL (1999) P38 mitogen activated protein kinase inhibitors—mechanisms and therapeutic potentials. Pharmacol Ther 82:389–397

    Article  CAS  PubMed  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  • Mease PJ (2003) Etanercept, a TNF antagonist for treatment of psoriatic arthritis and psoriasis. Skin Therapy Lett 8:1–8

    CAS  PubMed  Google Scholar 

  • Nash PT, Florin THJ (2005) New drugs, old drugs. Tumour necrosis factor inhibitors. Med J Aust 183:205–208

    PubMed  Google Scholar 

  • Nurmohamed MT, Dijkmans BA (2005) Efficacy, tolerability and cost effectiveness of disease-modifying antirheumatic drugs and biologic agents in rheumatoid arthritis. Drugs 65:661–694

    Article  CAS  PubMed  Google Scholar 

  • Ono K, Han J (2000) The p38 signal transduction pathway activation and function. Cell Signal 12:1–13

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer K (2003) Biological functions of tumor necrosis factor cytokines and their receptors. Cytokine Growth Factor Rev 14:185–191

    Article  CAS  PubMed  Google Scholar 

  • Roark WH, Padia J, Bolton GL, Blankley CJ, Essenburg AD, Stanfield RL, Bousley RF, Krause BR, Roth BD (1995) Bioisosterism in drug design: identification of and structure–activity relationships in a series of glycine anilide ACAT inhibitors. Bioorg Med Chem 3:29–39

    Article  CAS  PubMed  Google Scholar 

  • Rodgers JD, Shepard S, Zhu W, Shao L, Glenn J (2012) Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JNK inhibitors. WO 2012/068450A1

  • Sandham DA, Leblanc C, Brown LN (2013) Pyrrolopyridine compounds and their use in treating diseases. US 8,431,703 B2

  • Sherlock MH, Tom WC (1991) Substituted 1H-pyrrolopyridine-3-carboxamide.US 5,023,265

  • Stanczyk J, Ospelt C, Gay S (2008) Is there a future for small molecule drugs in the treatment of rheumatic disease. Curr Opin Rheum 20:257–262

    Article  CAS  Google Scholar 

  • Thomson AW, Lotze MT (2003) The cytokine handbook, 4th edn. Academic Press, London

    Google Scholar 

  • Townes JA, Golebiowski A, Clark MP, Laufersweiler MJ, Brugel TA, Sabat M, Bookland RG, Laughlin SK, VanRens JC, De B, Hsieh LC, Xu SC, Janusz MJ, Walter RL (2004) The development of new bicyclic pyrazole-based cytokine synthesis inhibitors. Bioorg Med Chem Lett 14:4945–4948

    Article  CAS  PubMed  Google Scholar 

  • Tracey D, Klareskog L, Sasso EH, Salfeld JG, Tak PP (2008) Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther 117:244–279

    Article  CAS  PubMed  Google Scholar 

  • Veronese AC, Callegari R, Salah SAA (1990) Tin(IV) chloride-promoted reactions of β-dicarbonyl compounds with nitriles. Synthesis of aminopyridines and aminoquinolines. Tetrahedron Lett 31:3485–3488

    Article  CAS  Google Scholar 

  • Veronese AC, Callegari R, Morelli CF (1995) Tin(IV) chloride-promoted synthesis of 4-aminopyridines and 4-aminoquinolines. Tetrahedron 51:12277–12284

    Article  CAS  Google Scholar 

  • Veronese AC, Morelli CF, Basato M (2002) One pot synthesis of unsaturated enaminoketoesters or of pyridines in the tin(IV) chloride-promoted reactions of β-ketoesters with α, β-unsaturated nitriles. Tetrahedron 58:9709–9712

    Article  CAS  Google Scholar 

  • Wadsworth SA, Cavender DE, Beers SA, Lalan P, Schafer PH, Malloy EA, Wu W, Fahmy B, Olini GC, Davis JE, Pellegrino-Gensey JL, Wachter MP, Siekierka JJ (1999) RWJ 67657, a potent, orally active inhibitor of p38 mitogen-activated protein kinase. J Pharmacol Exp Ther 291:680–687

    CAS  PubMed  Google Scholar 

  • Wagner G, Laufer S (2006) Small molecular anti-cytokine agents. Med Res Rev 26:1–62

    Article  CAS  PubMed  Google Scholar 

  • Wood P (2011) Understanding immunology, 3rd edn. Hervy Ling Ltd, Pearson Education limited, New York

    Google Scholar 

  • Yocum D (2004) Effective use of TNF antagonists. Arthritis Res Ther 6:S24–S30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan J, Hrnciar P, Guo Q, Maynard GD (2008) Pyrrolo-pyridine, pyrrolo-pyrimidine and related heterocyclic compounds. US 2008/0267887A1

  • Zablocki JA, Tarlton E Jr, Rizzi JP, Mantlo NB (2003) Aryl and heteroaryl substituted fused pyrroles anti-inflammatory agents. US 6,605,634B2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled M. H. Hilmy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3086 kb)

Supplementary material 2 (DOCX 8836 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hilmy, K.M.H., Abdul-Wahab, H.G., Soliman, D.H. et al. Novel pyrrolo[2,3-d]pyrimidines and pyrrolo[2,3-b]pyridines: design, synthesis, and in vivo TNF-α inhibitory activity. Med Chem Res 24, 2097–2110 (2015). https://doi.org/10.1007/s00044-014-1281-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-1281-9

Keywords

Navigation