Skip to main content
Log in

Steroidal saponins from the leaves of Yucca de-smetiana and their in vitro antitumor activity: structure activity relationships through a molecular modeling approach

Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Four steroidal saponins were isolated from the leaves of Yucca de-smetiana Baker. Their structures were established using one- and two- dimensional NMR spectroscopy and mass spectrometry. The structure of the new steroidal saponin was identified as: (25R)-3β-hydroxy-5α-spirostan-3-O-β-d-xylopyranosyl-(1 → 2)-β-d-galactopyranosyl-(1 → 2)-O-[β-d-glucopyranosyl-(1 → 3)]-β-d-glucopyranosyl-(1 → 4)-β-d-galactopyranoside (desmettianoside C) along with three known spirostanol and furostanol saponins. The isolated saponins were evaluated for their antitumor activity against HCT116, MCF7, HepG2, and A549 cell lines. Saponins 3 and 4 showed potent activity against HCT116, MCF7, and HepG2 cell lines in comparison with the positive control doxorubicin. A molecular modeling approach was performed to establish conformational criteria that could affect the biological activity of the isolated saponins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal PK (2003) Spectral assignments and reference data. Magn Reson Chem 41:965–968

    Article  CAS  Google Scholar 

  • Agrawal PK, Jain DC, Gupta RK, Thakur RS (1985) Carbon-13 NMR spectroscopy of steroidal sapogenins and steroidal saponins. Phytochemistry 24:2479–2496

    Article  CAS  Google Scholar 

  • Ali MS, Sharma GC, Asplund RO, Nevins MP, Garb S (1978) Isolation of antitumor polysaccharide fractions from Yucca glauca Nutt. (Lilliaceae). Growth 42:213–223

    PubMed  CAS  Google Scholar 

  • Anthony NB, Balog JM, Staudinger FB, Walker RD, Huff WE (1994) Environmental variability and incidence of ascites. Poult Sci 73:801–809

    Article  PubMed  CAS  Google Scholar 

  • Bahuguna S, Sati OP (1990) Spirostanol saponins from Yucca aloifolia rhizomes. Phytochemistry 29:342–343

    Article  CAS  Google Scholar 

  • Balestrieri C, Piacente S, Pizza C, Montoro P, Oleszek W, Visciano V, Balestrieri ML (2006) Relative effects of phenolic constituents from Yucca schidigera Roezl. bark on kaposi’s sarcoma cell proliferation, migration, and PAF synthesis. Biochempharmacol 71:1479–1487

    CAS  Google Scholar 

  • Balog JM, Anthony NB, Wall CV, Walker RD, Rath NC, Huff WE (1994) Blood variables, ascites scores and body and organ weights. Poult Sci 73:810–816

    Article  PubMed  CAS  Google Scholar 

  • Cheeke PR (2000) Actual and potential applications of Yucca schidigera and Quillaia saponaria saponins in human and animal nutrition. J Anim Sci 77:1–10

    Google Scholar 

  • Diab Y, Ioannou E, Emam A, Vagias C, Roussis V (2012) Desmettianosides A and B, bidesmosidic furostanol saponins with molluscicidal activity from Yucca desmettiana. Steroids 77:686–690

    Article  PubMed  CAS  Google Scholar 

  • Dou DQ, Zhang YW, Zhang L, Chen YJ, Yao XS (2001) The inhibitory effects of ginsenosides on protein tyrosine kinase activated by hypoxia/reoxygenation in cultured human umbilical vein endothelial cells. Planta Med 67:19–23

    Article  PubMed  CAS  Google Scholar 

  • Dragalin IP, Kintia PK (1975) Steroidal saponins of Yucca filamentosa: yuccoside C and protoyuccoside C. Phytochemistry 14:1817–1820

    Article  CAS  Google Scholar 

  • Ellington AA, Berhowl MA, Singletary KW (2006) Inhibition of Akt signaling and enhanced ERK1/2 activity are involved in induction of macroautophagy by triterpenoid B-group soyasaponins in colon cancer cells. Carcinogenesis 27:298–306

    Article  PubMed  CAS  Google Scholar 

  • Eskander J, Lavaud C, Harakat D (2010) Steroidal saponins from the leaves of Agave macroacantha. Fitoterapia 81:371–374

    Article  PubMed  CAS  Google Scholar 

  • Eskander J, Lavaud C, Harakat D (2011) Steroidal saponins from the leaves of Beaucarnea recurvata. Phytochemistry 72:946–951

    Article  CAS  Google Scholar 

  • Gonzalez AG, Hernandez JC, Leon F, Padron JI, Estevez F, Quintana J, Bermejo J (2003) Steroidal saponins from the bark of Dracaena draco and their cytotoxic activities. J Nat Prod 66:793–798

    Article  PubMed  CAS  Google Scholar 

  • Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comp Chem 17:490–519

    Article  CAS  Google Scholar 

  • Horton N, Lewis M (1992) Calculation of the free energy of association for protein complexes. Prot Sci 1:169–181

    Article  CAS  Google Scholar 

  • Hostettmann KA, Marston A (1995) Saponins chemistry and pharmacology of natural products. Cambridge University Press, Cambridge

    Google Scholar 

  • Jin Y, Kuk J, Oh K, Kim Y, Piao X, Park R (2007) A new steroidal saponin, yuccalan, from the leaves of Yucca smalliana. Arch Pharm Res 30:543–546

    Article  PubMed  CAS  Google Scholar 

  • Kearsley S (1990) An alternative method for the alignment of molecular structures: maximizing electrostatic and steric overlap. Tetrahedron Comput Methodol 3:615–633

    Article  CAS  Google Scholar 

  • Labrada KP, Brouard I, Morera C, Estevez F, Bermejo J, Rivera DG (2011) ‘Click’ synthesis of triazole-based spirostan saponin analogs. Tetrahedron 67:7713–7727

    Article  Google Scholar 

  • Liu MJ, Wang Z, Ju Y, Zhou JB, Wang Y, Wong RNS (2004) The mitotic-arresting and apoptosis-inducing effects of diosgenyl saponins on human leukemia cell lines. Biol Pharm Bull 27:1059–1065

    Article  PubMed  CAS  Google Scholar 

  • Mahato SB, Ganguly AN, Sahu NP (1982) Steroid saponins. Phytochemistry 21:959–978

    Article  CAS  Google Scholar 

  • Mimaki Y, Yokosuka A, Kuroda M, Sashida Y (2001) Cytotoxic activities and structure-cytotoxic relationships of steroidal saponins. Biol Pharm Bull 24:1286–1289

    Article  PubMed  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assays for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  • Nakano K, Yamasaki T, Imamura Y, Murakami K, Takaishi Y, Tomimatsu T (1989) The steroidal glycosides from the stem of Yucca gloriosa. Phytochemistry 28:1215–1217

    Article  CAS  Google Scholar 

  • Oleszek W, Sitek M, Stochmal A, Piacente S, Pizza C, Cheeke P (2001) Steroidal saponins of Yucca schidigera Roezl. J Agric Food Chem 49:4392–4396

    Article  PubMed  CAS  Google Scholar 

  • Piacente S, Pizza C, Oleszek W (2005) Saponins and phenolics of Yucca schidigera Roezl: chemistry and bioactivity. Phytochem Rev 4:177–190

    Article  CAS  Google Scholar 

  • Sarkar A, Kellogg GE (2010) Hydrophobicity-shake flasks, protein folding and drug discovery. Curr Top Med Chem 10:67–83

    Article  PubMed  CAS  Google Scholar 

  • Skhirtladze A, Plaza A, Montoro P, Benidze M, Kemetelidze E, Pizza C, Piacente S (2006) Furostanol saponins from Yucca gloriosa L. rhizomes. Biochem Syst Ecol 34:809–814

    Article  CAS  Google Scholar 

  • Thabrew MI, Hughes RD, McFarlane IG (1997) Screening of hepatoprotective plant components using a HepG2 cell cytotoxicity assay. J Pharm Pharmacol 49:1132–1135

    Article  PubMed  CAS  Google Scholar 

  • Tong QY, Qing Y, Shu D, He Y, Zhao YL, Li Y, Wang ZL, Zhang SY, Xing ZH, Xu C, Wei YQ, Huang W, Wu XH (2011) Deltonin, a steroidal saponin, inhibits colon cancer cell growth in vitro and tumor growth in vivo via induction of apoptosis and antiangiogenesis. Cell Physiol Biochem 27:233–242

    Article  PubMed  CAS  Google Scholar 

  • Trouillas P, Corbiere C, Liagre B, Duroux JL, Beneytout JL (2005) Structure-function relationship for saponin effects on cell cycle arrest and apoptosis in the human 1547 osteosarcoma cells: a molecular modelling approach of natural molecules structurally close to diosgenin. Bioorg Med Chem 13:1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Yuen-Nei Cheung J, Chik-Ying Ong R, Suen YK, Ooi V, Nai-Ching Wong H, Chung-Wai Mak T, Fung KP, Yu B, Kong SK (2005) Polyphyllin D is a potent apoptosis inducer in drug-resistant HepG2 cells. Cancer Lett 217:203–211

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang Y-J, Jacob MR, Li X, Yang C (2008) Steroidal saponins from the stem of Yucca elephantipes. Phytochemistry 69:264–270

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Khaled Mohamed, Bioassay-Cell Culture Laboratory, National Research Center-Cairo, Egypt, for carrying the antitumor activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Eskander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eskander, J., Sakka, O.K., Harakat, D. et al. Steroidal saponins from the leaves of Yucca de-smetiana and their in vitro antitumor activity: structure activity relationships through a molecular modeling approach. Med Chem Res 22, 4877–4885 (2013). https://doi.org/10.1007/s00044-013-0497-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-013-0497-4

Keywords

Navigation