Skip to main content

Advertisement

Log in

Synthesis, antimalarial-, and antibacterial activity evaluation of some new 4-aminoquinoline derivatives

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Some new 4-aminoquinoline derivatives were synthesized, characterized by their analytical and spectral data (IR, 1HNMR, 13CNMR and MS), and screened for in vitro antimalarial activity against a chloroquine-sensitive strain of Plasmodium falciparum (3D7). Results clearly reveal that all the synthesized compounds possess in vitro antimalarial activity at the tested dose which, however, was considerably less than that of the standard reference drug, chloroquine. From results, it could be assumed that the presence of an aromatic bulky group with optimal lipophilicity at 1,3-thiazinan-4-one ring system might be an important requirement for the antimalarial activity of synthesized compounds, 6ag. In addition to the evaluation of antimalarial activity, the synthesized compounds were also screened for antibacterial activity against six different strains of Gram-positive (Bacillus subtilis, Bacillus cereus, and Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae). All the compounds at the tested doses were found to be active against all the tested organisms, but were less active as compared to the standard drug, ofloxacin. Results of antibacterial study indicate that aromatic bulky substituents have greater contributing effect than the aliphatic non-bulky group toward the antibacterial activity of the prepared 4-aminoquinoline derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1

Similar content being viewed by others

References

  • Casteel DA (2003) Antimalarial agents. In: Abraham DJ (ed) Burger’s medicinal chemistry and drug discovery, 5th edn. Wiley Interscience, New York, p 920

    Google Scholar 

  • Chiang PK, Bujnicki JM, Su S, Lanar DE (2006) Malaria: therapy genes and vaccines. Curr Mol Med 6(3):309

    Article  PubMed  CAS  Google Scholar 

  • Chou AC, Chevli R, Fitch CD (1980) Ferriprotoporphyrin IX fulfills the criteria for identification as the chloroquine receptor of malaria parasites. Biochemistry 19:1543–1549

    Article  PubMed  CAS  Google Scholar 

  • Collee JG, Duguid JP, Fraser MG, Marmion BP, McCartney M (1989) Practical medical microbiology, 13th edn. Churchill Livingstone, London

    Google Scholar 

  • Dorn A, Stoffel R, Matile H, Bubendorf A, Ridley RG (1995) Malarial hemozoin/β-hematin supports haem polymerization in the absence of protein. Nature 374:269–271

    Article  PubMed  CAS  Google Scholar 

  • Egan TJ, Marques HM (1999) The role of haem in the activity of chloroquine and related antimalarial drugs. Coord Chem Rev 190–192:493–517

    Article  Google Scholar 

  • Farooq U, Mahajan RC (2004) Drug resistance in malaria. J Vector Borne Dis 41:45

    PubMed  Google Scholar 

  • Foley M, Tilley L (1998) Quinoline antimalarials: mechanism of action and resistance and prospects for new agents. Pharmacol Ther 79(1):60–67

    Article  Google Scholar 

  • Gillies HM (2000) Management of severe malaria: a practical handbook, 2nd edn. WHO, Geneva

    Google Scholar 

  • Goker H, Kus C, Boykin DW, Yildiz S, Altanlar N (2002) Synthesis of some new 2-substituted-phenyl-1H-benzimidazole-5-carbonitriles and their potent activity against Candida species. Bioorg Med Chem 10:2589–2596

    Article  PubMed  CAS  Google Scholar 

  • He Y, Wu B, Yang J, Robinson D, Risen L, Ranken R, Blyh L, Sheng S, Swayze EE (2003) 2-Piperidin-4-yl-benzimidazoles with broad spectrum antibacterial activities. Bioorg Med Chem Lett 13:3253–3256

    Article  PubMed  CAS  Google Scholar 

  • Hewitt W (2004) Microbiological assay for pharmaceutical analysis: a rational approach. Interpharm/CRC, New York

    Google Scholar 

  • Lambros C, Vanderberg JPJ (1979) Synchronization of Plasmodium falciparum erythrocytic stages in culture. Parasitology 65:418–420

    Article  CAS  Google Scholar 

  • Madrid PB, Wilson NT, DeRisi JL, Guy RK (2004) Parallel synthesis and antimalarial screening of a 4-aminoquinoline library. J Comb Chem 6:437–442

    Article  PubMed  CAS  Google Scholar 

  • Pandey AV, Bisht H, Babbarwal VK, Srivastava J, Pandey KC, Chauhan VS (2001) Mechanism of malarial haem detoxification inhibition by chloroquine. Biochem J 355:333–338

    Article  PubMed  CAS  Google Scholar 

  • Ridley R (2002) Medical need, scientific opportunity and the drive for antimalarial drugs. Nature 415:686–693

    Article  PubMed  CAS  Google Scholar 

  • Silverstein RM, Webster FX (2005) Spectrometric identification of organic compounds, 6th edn. Wiley, New York

    Google Scholar 

  • Solomon VR, Haq W, Srivastava K, Puri SK, Katti SB (2005) Design and synthesis of new antimalarial agents from 4-aminoquinoline. Bioorg Med Chem 13:2157–2165

    Article  PubMed  CAS  Google Scholar 

  • Solomon VR, Puri SK, Srivastava K, Katti SB (2007) Synthesis and antimalarial activity of side chain modified 4-aminoquinoline derivatives. J Med Chem 50:394–398

    Article  PubMed  CAS  Google Scholar 

  • Sullivan DJ, Gluzman IY, Russell DG, Goldberg DE (1996) On the molecular mechanism of chloroquine’s antimalarial action. Proc Natl Acad Sci USA 93:11865–11870

    Article  PubMed  CAS  Google Scholar 

  • Talisuna AO, Loland P, Alessandro UD (2004) History, dynamics, and public health importance of malaria parasite resistance. Clin Microbiol Rev 17(1):236

    Article  Google Scholar 

  • Tilley L, Loria P, Foley M (2001) Chloroquine and Other Quinoline Antimalarials. In: Rosenthal PJ (ed.) Antimalarial Chemotherapy: mechanisms of action, resistance, and new directions in drug discovery. Humana, New Jersey, pp 89–99, pp 103–105

  • Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193:673–675

    Article  PubMed  CAS  Google Scholar 

  • White WJ (2008) Plasmodium knowlesi: the fifth human malaria parasite. Clin Infect Dis 46:172

    Article  PubMed  CAS  Google Scholar 

  • Wiesner J, Ortmann R, Schlitzer M (2003) New antimalarial drugs. Angew Chem Int Ed Engl 42:5274

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (1998) http://www.rbm.who.int/ what is malaria? Roll back malaria. World Health Organization, Geneva. Accessed 25 April 2009

Download references

Acknowledgments

The authors thank M/s Mangalam Drugs & Organics Ltd., Mumbai, for supplying gift sample of 4,7-dichloroquinoline; Director, SAIF, NEHU, Shillong, for recording the spectral data of the compounds, and Dr. J. Mahanta, Director, R M R C (I C M R), N E Region, Dibrugarh, for providing antimalarial screening facility. Technical assistance provided by Mr. B. K. Goswami, Mr. Devojit Kr. Sarma, and Dr. Kanta Bhattacharya, in antimalarial screening is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mithun Rudrapal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudrapal, M., Chetia, D. & Prakash, A. Synthesis, antimalarial-, and antibacterial activity evaluation of some new 4-aminoquinoline derivatives. Med Chem Res 22, 3703–3711 (2013). https://doi.org/10.1007/s00044-012-0371-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-012-0371-9

Keywords

Navigation