Skip to main content

Advertisement

Log in

Models for the prediction of PPARs agonistic activity of indanylacetic acids

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

With the growth of combinatorial chemistry methods in drug discovery, a huge number of compounds are synthesized and screened in parallel for in vitro pharmacological activity, which surprisingly increased the demands of efficient mathematical models to predict desired biological activity. In the present study, an in silico approach using moving average analysis has been applied to a dataset comprising 73 analogues of indanylacetic acid for development of mathematical models for the prediction of each PPAR subtype as well as pan agonistic activity. The value of majority of molecular descriptors (n = 50) for each analogue in the dataset was computed by means of E-Dragon software (version 1.0). Three molecular descriptors, i.e. eccentric adjacency topochemical index-3, information content index-neighbourhood symmetry of 5-order and 2-path kier alpha-modified shape index, yielded the best PPAR subtype specific and sum/pan models by means of moving average analysis. The overall accuracy of the prediction for all individual mathematical models proposed with regard to PPAR α, γ and δ agonistic activity was found to be ≥87, ≥93 and ≥83 %, respectively. Surprisingly, high predictability of the order of ≥86 % was found in the case of sum/pan models. The statistical significance of models/indices was assessed through intercorrelation analysis, sensitivity, specificity and Matthew’s correlation coefficient. High predictability authenticates proposed models for prediction of each PPAR subtype (α/γ/δ) specific as well as pan agonistic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bajaj S (2002) Study on topochemical descriptors for the prediction of physiochemical and biological properties of molecules. Phd thesis, Guru Gobind Singh Indraprastha University, Delhi, India

  • Bajaj S, Sambi SS, Madan AK (2004) Predicting anti-HIV activity of phenethylthiazolethiourea (PETT) analogs: computational approach using Wiener’s topochemical index. J Mol Struct (Theochem) 684:197–203

    Article  CAS  Google Scholar 

  • Bajaj S, Sambi SS, Madan AK (2005) Prediction of anti-inflammatory activity of N-arylanthranilic acids: computational approach using refined Zagreb indices. Croat Chem Acta 78:165–174

    CAS  Google Scholar 

  • Bajaj S, Sambi SS, Gupta S, Madan AK (2006) Model for prediction of anti-HIV activity of 2-pyridinone derivatives using novel topological descriptor. QSAR Comb Sci 25:813–823

    Article  CAS  Google Scholar 

  • Balakumar P, Rose M, Ganti SS, Krishan P, Singh M (2007) PPAR dual agonists: are they opening Pandora’s Box? Pharmacol Res 56:91–98

    Article  PubMed  CAS  Google Scholar 

  • Baldi P, Bruank S, Chauvin Y, Andersen CAF, Nielsen H (2000) Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16:412–424

    Article  PubMed  CAS  Google Scholar 

  • Basak SC, Mills D, Hawkins DM (2008) Predicting allergic content dermatitis: a hierarchical structure–activity relationship (SAR) approach to chemical classification using topological and quantum chemical descriptors. J Comput-Aided Mol Des 22:339–343

    Article  PubMed  CAS  Google Scholar 

  • Basak SC, Roy, AB and Ghosh, JJ (1980) Study of the structure-function relationship of pharmacological and toxicological agents using information theory. In: Avula XJR, Bellman R, Luke YL, Rigler, AK (Eds) Proceedings of the Second International Conference on Mathematical Modelling, University of Missouri-Rolla, USA

  • Bonchev D (1983) Information theoretic indices for characterization of chemical structures. Wiley–Interscience, New York

    Google Scholar 

  • Brown RD, Martin YC (1997) The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding. J Chem Inf Comput Sci 37:1–9

    Article  CAS  Google Scholar 

  • Carugo O (2007) Detailed estimation of bioinformatics prediction reliability through the fragmented prediction performance plots. BMC Bioinf 8:380

    Article  Google Scholar 

  • Casanola-Martin GM, Marrero-Ponce Y, Tareq M, Khan H, Ather A, Khan KM, Torrens F, Rotondo R (2007) Dragon method for finding novel tyrosinase inhibitors: biosilico identification and experimental in vitro assays. Eur J Med Chem 42:1370–1381

    Article  PubMed  CAS  Google Scholar 

  • Chemical abstracts service http://www.cas.org. Accessed 10 Oct 2012

  • Chinetti-Gbaguidi G, Fruchart J-C, Staels B (2005) Role of the PPAR family of nuclear receptors in the regulation of metabolic and cardiovascular homeostasis: new approaches to therapy. Curr Opin Pharmacol 5:177–183

    Article  PubMed  CAS  Google Scholar 

  • Dong P, Zhang Y, Ge G, Ai C, Liu Y, Yang L, Liu C (2008) Modeling resistance index of taxoids to MCF-7 cell lines using ANN together with electrotopological state descriptors. Acta Pharmacol Sin 29:385–396

    Article  PubMed  CAS  Google Scholar 

  • Dureja H, Madan AK (2005) Topochemical models for prediction of cyclin-dependent kinase 2 inhibitory activity of indole-2-ones. J Mol Model 11:525–531

    Article  PubMed  CAS  Google Scholar 

  • Dureja H, Gupta S, Madan AK (2008a) Predicting anti-HIV-1 activity of 6-arylbenzonitriles: computational approach using superaugmented eccentric connectivity topochemical indices. J Mol Graph Model 26:1020–1029

    Article  PubMed  CAS  Google Scholar 

  • Dureja H, Gupta S, Madan AK (2008b) Topological models for prediction of pharmacokinetic parameters of cephalosporins using random forest, decision tree and moving average analysis. Sci Pharm 76:377–394

    Article  CAS  Google Scholar 

  • Dutt R, Madan AK (2009) Improved superaugmented eccentric connectivity indices for QSAR/QSPR Part I: development and evaluation. Med Chem Res 19:431–447

    Article  Google Scholar 

  • Estrada E, Molina E (2001) Novel local (fragment–based) topological molecular descriptors for QSPR/QSAR and molecular design. J Mol Graph Model 20:54–64

    Article  PubMed  CAS  Google Scholar 

  • Etgen GJ, Oldham BA, Johnson WT, Broderick CL, Montrose CR, Brozinick JT, Misener EA, Bean JS, Bensch WR, Brooks DA, Shuker AJ, Rito CJ, McCarthy JR, Ardecky RJ, Tyhonas JS, Dana SL, Bilakovics JM, Paterniti JR Jr, Ogilvie KM, Liu S, Kauffman RF (2002) A tailored therapy for the metabolic syndrome: the dual peroxisome proliferator–activated receptor-α/γ agonist LY465608 ameliorates insulin resistance and diabetic hyperglycemia while improving cardiovascular risk factors in preclinical models. Diabetes 51:1083–1087

    Article  PubMed  CAS  Google Scholar 

  • FDA (2004) Challenge and opportunity on the critical path to new medical products. Food and Drug Administration, U.S Department of Health and Human Services

  • Goel A, Madan AK (1995) Structure-activity study on anti-inflammatory pyrazole carboxylic acid hydrazide analogs using molecular connectivity indices. J Chem Inf Comput Sci 35:510–514

    Article  PubMed  CAS  Google Scholar 

  • Gross B, Staels B (2007) PPAR agonists: multimodal drugs for the treatment of type-2 diabetes. Best Pract Res Clin Endocrinol Metab 21:687–710

    Article  PubMed  CAS  Google Scholar 

  • Gupta S (2002) Application and development of graph invariants for drug design. Phd thesis Punjabi University, Patiala, India

  • Gupta S, Singh M, Madan AK (2000) Connective eccentric index: a novel topological descriptors for predicting biological activity. J Mol Graph Model 18:18–25

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Singh M, Madan AK (2001) Predicting Anti- HIV activity: computational approach using novel topological indices. J Comput-Aided Mol Des 15:671–678

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Singh M, Madan AK (2003) Novel topochemical descriptors for predicting anti-HIV activity. Ind J Chem 42A:1414–1425

    CAS  Google Scholar 

  • Gutman I, Trinajstic N (1972) Graph theory and molecular orbitals: total π- electron energy of alternant hydrocarbon. Chem Phys Lett 17:535–538

    Article  CAS  Google Scholar 

  • Han L, Wang Y, Bryant SH (2008) Developing and validating predictive decision tree models from mining chemical structural fingerprints and high throughoutput data in PubChem. BMC Bioinf 9:401

    Article  Google Scholar 

  • Hollas B (2003) An analysis of the autocorrelation descriptor for molecules. J Math Chem 33:91–101

    Article  CAS  Google Scholar 

  • Javiya VA, Patel JA (2006) The role of peroxisome proliferator-activated receptors in human disease. Ind J Pharmacol 38:243–253

    Article  CAS  Google Scholar 

  • Kapetanovic IM (2008) Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach. Chem Biol Interact 171:165–176

    Article  PubMed  CAS  Google Scholar 

  • Kasuga J, Yamasaki D, Ogura K, Shimizu M, Sato M, Makishima M, Doi T, Hashimotoa Y, Miyachi H (2008) SAR-oriented discovery of peroxisome proliferator-activated receptor pan agonist with a 4-adamantylphenyl group as a hydrophobic tail. Bioorg Med Chem Lett 18:1110–1115

    Article  PubMed  CAS  Google Scholar 

  • Kier LB (1986) Shape indexes of orders one and three from molecular graphs. Quant Struct–Act Relat 5:1–7

    Article  CAS  Google Scholar 

  • Lamanna C, Bellini M, Padova A, Westerberg G, Maccari L (2008) Straightforward recursive partitioning model for discarding insoluble compounds in the drug discovery process. J Med Chem 51:2891–2897

    Article  PubMed  CAS  Google Scholar 

  • Leach AR, Bryce RA, Robinson AJ (2000) Synergy between combinatorial chemistry and de novo design. J Mol Graph Model 18:358–367

    Article  PubMed  CAS  Google Scholar 

  • Lengauer T, Lemmen C, Rarey M, Zimmermann M (2004) Novel technologies for virtual screening. Drug Discov Today 9:27–34

    Article  PubMed  CAS  Google Scholar 

  • Matthews BW (1975) Comparison of the predicted and observed secondary structure of T4 phase lysozyme. Biochim Biophys Acta 405:442–451

    Article  PubMed  CAS  Google Scholar 

  • McGee P (2005) Modelling success with in silico tools. Drug Discov Today 8:23–28

    Google Scholar 

  • Mohajeri A, Dinpajooh MH (2008) Structure–toxicity relationship for aliphatic compounds using quantum topological descriptors. J Mol Struct (Theochem) 855:1–3

    Article  CAS  Google Scholar 

  • Nadine S, Christine J, Claudia A, Michael CH (2008) Gradual in silico filtering for drug like substances. J Chem Inf Model 48:613–628

    Article  Google Scholar 

  • Nikolić S, Kovačević G, Miličević A, Trinajstić N (2003) The Zagreb indices 30 years after. Croat Chem Acta 76:113–124

    Google Scholar 

  • Peltason L, Bajorath J (2007) SAR index: quantifying the nature of structure-activity relationships. J Med Chem 50:5571–5578

    Article  PubMed  CAS  Google Scholar 

  • Prabhakar YS, Gupta MK (2008) Chemical structure indices in In silico design. Sci Pharm 76:101–132

    Article  CAS  Google Scholar 

  • Randic M (1975) On characterization of molecular branching. J Am Chem Soc 97:6609–6615

    Article  CAS  Google Scholar 

  • Randic M, Mihalic Z (1994) Graphical bond orders: novel structural descriptors. J Chem Inf Comput Sci 34:403–409

    Article  CAS  Google Scholar 

  • Reddy AS, Pati SP, Kumar PP, Pradeep HN, Sastry GN (2007) Virtual screening in drug discovery—A computational perspective. Current Protein Pept Sci 8:329–351

    Article  CAS  Google Scholar 

  • Rudolph J, Chen L, Majumdar D, Bullock WH, Burns M, Claus T, Cruz FED, Daly M, Ehrgott FJ, Johnson JS, Livingston JN, Schoenleber RW, Shapiro J, Yang L, Tsutsumi M, Ma X (2007) Indanylacetic acid derivatives carrying 4-thiazolyl-phenoxy tail groups, a new class of potent PPAR α/γ/δ Pan agonists: synthesis, structure-activity relationship, and in vivo efficacy. J Med Chem 50:984–1000

    Article  PubMed  CAS  Google Scholar 

  • Selassie CD (2003) History of quantitative structure–activity relationships. In: Abraham DJ (ed) Burger’s medicinal chemistry and drug discovery, vol 1, 6th edn. Wiley, New York, pp 1–43

    Google Scholar 

  • Shearer BG, Billin AN (2007) The next generation of PPAR drugs: do we have the tools to find them? Biochim Biophys Acta 1771:1082–1093

    Article  PubMed  CAS  Google Scholar 

  • Smolenskii EA, Vlasova GV, Platunov DY, Ryzhov A (2006) Ad hoc optimal topological indices for QSPR. Russ Chem Bull, Int Ed 55:1508–1515

    Article  CAS  Google Scholar 

  • Sundriyal S, Bharatam PV (2009a) Important pharmacophoric features of pan PPAR agonists: common chemical feature analysis and virtual screening. Eur J Med Chem 44:3488–3495

    Article  PubMed  CAS  Google Scholar 

  • Sundriyal S, Bharatam PV (2009b) ‘Sum of activities’ as dependent parameter: a new CoMFA-based approach for the design of pan PPAR agonists. Eur J Med Chem 44:42–53

    Article  PubMed  CAS  Google Scholar 

  • Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D, Ertl P, Palyulin VA, Radchenko EV, Zefirov NS, Makarenko AS, Tanchuk VY, Prokopenko VV (2005) Virtual computational chemistry laboratory—design and description. J Comput-Aided Mol Des 19:453–463

    Article  PubMed  CAS  Google Scholar 

  • Todeschini R, Consonni V (2009) Molecular descriptors for chemoinformatics. Wiley–VCH, Weinheim

    Book  Google Scholar 

  • Trinajstić N (1983) Chemical graph theory. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Trinajstić N, Nikolic S, Basak SC, Lukovits I (2001) Distance indices and their hyper counterparts: intercorrelation and use in the structure-property modelling. SAR QSAR Environ Res 12:31–54

    Article  PubMed  Google Scholar 

  • Turner JV, Maddalena DJ, Cutler DJ (2004) Pharmacokinetic parameter prediction from drug structure using artificial neural networks. Int J Pharm 270:209–219

    Article  PubMed  CAS  Google Scholar 

  • Walters WP, Stahl MT, Murcko MA (1998) Virtual screening-an overview. Drug Discov Today 3:160–178

    Article  CAS  Google Scholar 

  • Wiener H (1947) Structural determination of the paraffin boiling points. J Am Chem Soc 69:2636–2638

    Article  CAS  Google Scholar 

  • Willson TM, Brown PJ, Sternbach DD, Henke BR (2000) The PPARs: from orphan receptors to drug discovery. J Med Chem 43:527–550

    Article  PubMed  CAS  Google Scholar 

  • Zettl H, Steri R, Lämmerhofer M, Schubert-Zsilavecz M (2009) Discovery of a novel class of 2-mercaptohexanoic acid derivatives as highly active PPARα agonists. Bioorg Med Chem Lett 19:4421–4426

    Article  PubMed  CAS  Google Scholar 

  • Zhao YH, Le J, Abraham MH, Hersey A, Eddershaw PJ, Luscombe CN, Boutina D, Beck G, Sherborne B, Copper I, Platts JA (2001) Evaluation of human intestinal absorption data and subsequent derivation of quantitative structure-activity relationship (QSAR) with the Abraham descriptors. J Pharm Sci 90:749–784

    Article  PubMed  CAS  Google Scholar 

  • Zoete V, Grosdidier A, Michielin O (2007) Peroxisome proliferator-activated receptor structures: ligand specificity, molecular switch and interactions with regulators. Biochim Biophys Acta 1771:915–925

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Madan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutt, R., Madan, A.K. Models for the prediction of PPARs agonistic activity of indanylacetic acids. Med Chem Res 22, 3213–3228 (2013). https://doi.org/10.1007/s00044-012-0315-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-012-0315-4

Keywords

Navigation