Skip to main content
Log in

A Hardy Inequality for Ultraspherical Expansions with an Application to the Sphere

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We prove a Hardy inequality for ultraspherical expansions by using a proper ground state representation. From this result we deduce some uncertainty principles for this kind of expansions. Our result also implies a Hardy inequality on spheres with a potential having a double singularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55, Washington (1964)

  2. Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality. Ann. Math. 138, 213–242 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beckner, W.: Pitt’s inequality and the uncertainty principle. Proc. Am. Math. Soc. 123, 1897–1905 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Beckner, W.: Pitt’s inequality with sharp convolution estimates. Proc. Am. Math. Soc. 136, 1871–1885 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Betancor, J.J., Faria, J.C., Rodrguez-Mesa, L., Testoni, R., Torrea, J.L.: A choice of Sobolev spaces associated with ultraspherical expansions. Publ. Mat. 54, 221–242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Branson, T.P.: Sharp inequalities, the functional determinant, and the complementary series. Trans. Am. Math. Soc. 347, 3671–3742 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ciaurri, Ó., Roncal, L., Thangavelu, S.: Hardy-type inequalities for fractional powers of the Dunkl–Hermite operator. Proc. Edinburgh Math. Soc. (to appear). Preprint: arXiv:1602.04997

  8. Dai, F., Xu, Y.: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer, New York (2013)

    Book  MATH  Google Scholar 

  9. Frank, R.L., Lieb, E.H., Seiringer, R.: Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators. J. Am. Math. Soc. 21, 925–950 (2008)

    Article  MATH  Google Scholar 

  10. Garofalo, N., Lanconelli, E.: Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation. Ann. Inst. Fourier (Grenoble) 40, 313–356 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gorbachev, D.V., Ivanov, V.I., Yu Tikhonov, S.: Sharp Pitt inequality and logarithmic uncertainty principle for Dunkl transform in \(L^2\). J. Approx. Theory 202, 109–118 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Muckenhoupt, B., Stein, E.M.: Classical expansions and their relation to conjugate harmonic functions. Trans. Am. Math. Soc. 118, 17–92 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  13. Olver, F.W.J. (ed.): NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  14. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series. Vol. 1. Elementary Functions. Translated from the Russian and with a preface by N.M. Queen. Gordon and Breach Science Publishers, New York (1986)

  15. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series. Vol. 2. Special Functions. Translated from the Russian by N. M. Queen. Gordon and Breach Science Publishers, New York (1986)

  16. Roncal, L., Thangavelu, S.: Hardy’s inequality for fractional powers of the sublaplacian on the Heisenberg group. Adv. Math. 302, 106–158 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rubin, B.: Introduction to Radon Transforms. With Elements of Fractional Calculus and Harmonic Analysis, Encyclopedia of Mathematics and its Applications. Cambridge University Press, New York (2015)

    Google Scholar 

  18. Samko, S.G.: Hypersingular Integrals and their Applications, Analytical Methods and Special Functions. Taylor & Francis, London (2002)

    MATH  Google Scholar 

  19. Sherman, T.O.: The Helgason Fourier transform for compact Riemannian symmetric spaces of rank one. Acta Math. 164, 73–144 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yafaev, D.: Sharp constants in the Hardy–Rellich inequalities. J. Funct. Anal. 168, 121–144 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Research of Óscar Ciaurri supported by Grant No. MTM2015-65888-C4-4-P of the Spanish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Arenas.

Additional information

Communicated by Krzysztof Stempak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arenas, A., Ciaurri, Ó. & Labarga, E. A Hardy Inequality for Ultraspherical Expansions with an Application to the Sphere. J Fourier Anal Appl 24, 416–430 (2018). https://doi.org/10.1007/s00041-017-9531-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-017-9531-0

Keywords

Mathematics Subject Classification

Navigation