Skip to main content
Log in

The \( \ell _1 \)-Analysis in Phase Retrieval with Redundant Dictionary

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

This article presents new results concerning the recovery of a signal from the magnitude only measurements where the signal is not sparse in an orthonormal basis but in a redundant dictionary, which we call it phase retrieval with redundant dictionary for short. To solve this phaseless problem, we analyze the \( \ell _1 \)-analysis model. Firstly we investigate the noiseless case with presenting a null space property of the measurement matrix under which the \( \ell _1 \)-analysis model provides an exact recovery. Secondly we introduce a new property (S-DRIP) of the measurement matrix. By solving the \( \ell _1 \)-analysis model, we prove that this property can guarantee a stable recovery of real signals that are nearly sparse in overcomplete dictionaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldroubi, A., Chen, X., Powell, A.M.: Perturbations of measurement matrices and dictionaries in compressed sensing. Appl. Comput. Harmon. Anal. 33(2), 282–291 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baker, C.A.: A note on sparsification by frames. arXiv:1308.5249 (2013)

  3. Balan, R., Casazza, P., Edidin, D.: On signal reconstruction without phase. Appl. Comput. Harmon. Anal. 20(3), 345–356 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodmann, B.G., Hammen, N.: Stable phase retrieval with low-redundancy frame. Adv. Comput. Math. 41(2), 317–331 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, T.T., Zhang, A.: Sharp RIP bound for sparse signal and low-rank matrix recovery. Appl. Comput. Harmon. Anal. 35(1), 74–93 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, T.T., Zhang, A.: Sparse representation of a polytope and recovery of sparse signals and low-rank matrices. IEEE Trans. Inf. Theory 60(1), 122–132 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Candès, E.J., Eldar, Y.C., Needell, D., Randall, P.: Compressed sensing with coherent and redundant dictionaries. Appl. Comput. Harmon. Anal. 31(1), 59–73 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X.M., Wang, H.C., Wang, R.R.: A null space analysis of the \(\ell _1\)-synthesis method in dictionary-based compressed sensing. Appl. Comput. Harmon. Anal. 37(3), 492–515 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Conca, A., Edidin, D., Hering, M., Vinzant, C.: An algebraic characterization of injectivity in phase retrieval. Appl. Comput. Harmon. Anal. 38(2), 346–356 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Elad, M., Milanfar, P., Rubinstein, R.: Analysis versus synthesis in signal priors. Inverse Probl. 23(3), 947968 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fienup, J.: Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint. J. Opt. Soc. Am. 4(1), 118–123 (1987)

    Article  MathSciNet  Google Scholar 

  12. Gao, B., Wang, Y., Xu, Z.Q.: Stable signal recovery from phaseless measurements. J. Fourier Anal. Appl. 22(4), 787–808 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Herman, M., Strohmer, T.: High resolution radar via compressed sensing. IEEE Trans. Signal Process. 57(6), 22752284 (2009)

    Article  MathSciNet  Google Scholar 

  14. Kohler, D., Mandel, L.: Source reconstruction from the modulus of the correlation function: a practical approach to the phase problem of optical coherence theory. J. Opt. Soc. Am. 63(2), 126–134 (1973)

    Article  Google Scholar 

  15. Moravec, M., Romberg, J., Baraniuk, R.: Compressive phase retrieval. Proc. SPIE 6701, 670120–670120 (2007). doi:10.1117/12.736360

    Article  Google Scholar 

  16. Rauhut, H., Schnass, K., Vandergheynst, P.: Compressed sensing and redundant dictionaries. IEEE Trans. Inf. Theory 54(5), 2210–2219 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schniter, P., Rangan, S.: Compressive phase retrieval via generalized approximate message passing. IEEE Trans. Signal Process. 63(4), 1043–1055 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shechtman, Y., Eldar, Y.C., Szameit, A., Segev, M.: Sparsity based sub-wavelength imaging with partially incoherent light via quadratic compressed sensing. Opt. Express 19(16), 14807–14822 (2011)

    Article  Google Scholar 

  19. Voroninski, V., Xu, Z.Q.: A strong restricted isometry property, with an application to phaseless compressed sensing. Appl. Comput. Harmon. Anal. 40(2), 386–395 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, Y., Xu, Z.Q.: Phase retrieval for sparse signals. Appl. Comput. Harmon. Anal. 37(3), 531–544 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu, G.W., Xu, Z.Q.: On the \(\ell _1\)-norm invariant convex \( k \)-sparse decomposition of signals. J. Oper. Res. Soc. China 1(4), 537–541 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yang, Z., Zhang, C.S., Xie, L.H.,: Robust compressive phase retrieval via L1 minimization with application to image reconstruction. arXiv:1302.0081 (2013)

Download references

Acknowledgments

My deepest gratitude goes to Professor Zhiqiang Xu, my academic supervisor, for his guidance and many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Gao.

Additional information

Communicated by Roman Vershynin.

Appendix

Appendix

The following two lemmas are useful in the proof of Lemma 4.1.

Lemma 6.1

(Sparse representation of a polytope [6, 21]): Suppose \(\alpha >0\) is a constant and \(s>0\) is an integer. Set

$$\begin{aligned} T(\alpha ,s):=\{v\in \mathbb {R}^n: \Vert v\Vert _\infty \le \alpha ,\ \Vert v\Vert _1\le s\alpha \}. \end{aligned}$$

For any \(v\in \mathbb {R}^n\), set

$$\begin{aligned} U (\alpha ,s,v):=\{u\in \mathbb {R}^n:supp (u)\subseteq supp (v),\Vert u\Vert _0\le s,\Vert u\Vert _1=\Vert v\Vert _1,\Vert u\Vert _\infty \le \alpha \}. \end{aligned}$$

Then \(v\in T(\alpha ,s)\) if and only if v is in the convex hull of \( U (\alpha ,s,v)\). In particular, any \(v\in T(\alpha ,s)\) can be expressed as

$$\begin{aligned} v=&\sum _{i=1}^{M}\lambda _iu_i\quad \text {and}\quad 0\le \lambda _i\le 1,\, \sum _{i=1}^{M}\lambda _i=1,\\&u_i\in U (\alpha ,s,v). \end{aligned}$$

Lemma 6.2

(Lemma 5.3 in [5]): Suppose \(m\ge r \), \( a_1\ge a_2\ge \cdots \ge a_m\ge 0 \) and \( \sum _{i=1}^{r}a_i\ge \sum _{i=r+1}^{m}a_i \). Then for all \( \alpha \ge 1 \), we have

$$\begin{aligned} \sum _{j=r+1}^{m}a_j^\alpha \le \sum _{i=1}^{r}a_i^\alpha . \end{aligned}$$

Now we are ready to prove Lemma 4.1.

Proof of the Lemma 4.1

We assume that the tight frame \( D\in {\mathbb R}^{n\times N} \) is normalized, i.e., \( DD^*=I \) and \( \Vert y\Vert _2=\Vert D^*y\Vert _2 \) for all \( y\in \mathbb {R}^n \). For a subset \( T\subseteq \{1,2,\ldots ,N\} \), we denote \( D_T \) as the matrix D restricted to the columns indexed by T (replacing other columns by zero vectors).

Set \(h:=\hat{x}-x_0\). Let \(T_0\) denote the index set of the largest k coefficients of \(D^*x_0\) in magnitude. Then

$$\begin{aligned} \Vert D^*x_0\Vert _1+\rho \ge \Vert D^*\hat{x}\Vert _1&=\Vert D^*x_0+D^*h\Vert _1\\ {}&=\Vert D^*_{T_0}x_0+D^*_{T_0}h+D^*_{T_0^c}x_0+D^*_{T_0^c}h\Vert _1\\ {}&\ge \Vert D^*_{T_0}x_0\Vert _1-\Vert D^*_{T_0}h\Vert _1-\Vert D^*_{T_0^c}x_0\Vert _1+\Vert D^*_{T_0^c}h\Vert _1, \end{aligned}$$

which implies

$$\begin{aligned} \Vert D^*_{T_0^c}h\Vert _1&\le \Vert D^*_{T_0}h\Vert _1+2\Vert D^*_{T_0^c}x_0\Vert _1+\rho \\&=\Vert D^*_{T_0}h\Vert _1+2\sigma _k(D^*x_0)_1+\rho . \end{aligned}$$

Suppose \( S_0 \) is the index set of the k largest entries in absolute value of \( D^*h \). We get

$$\begin{aligned} \Vert D^*_{S_0^c}h\Vert _1\le \Vert D^*_{T_0^c}h\Vert _1&\le \Vert D^*_{T_0}h\Vert _1+2\sigma _k(D^*x_0)_1+\rho \\&\le \Vert D^*_{S_0}h\Vert _1+2\sigma _k(D^*x_0)_1+\rho . \end{aligned}$$

Set

$$\begin{aligned} \alpha :=\frac{\Vert D^*_{S_0}h\Vert _1+2\sigma _k(D^*x_0)_1+\rho }{k}. \end{aligned}$$

We divide \( D^*_{S_0^c }h\) into two parts \( D^*_{S_0^c }h=h^{(1)}+h^{(2)} \), where

$$\begin{aligned} h^{(1)}:=D^*_{S_0^c}h\cdot I_{\{i:\,\,|D^*_{S_0^c}h(i)|>\alpha /(t-1)\}}, \quad h^{(2)}:=D^*_{S_0^c}h\cdot I_{\{i:\,\,|D^*_{S_0^c}h(i)|\le \alpha /(t-1)\}} . \end{aligned}$$

Then a simple observation is that \( \Vert h^{(1)}\Vert _1\le \Vert D^*_{S_0^c}h\Vert _1\le \alpha k \). Set

$$\begin{aligned} \ell := |supp (h^{(1)})|=\Vert h^{(1)}\Vert _0 . \end{aligned}$$

Since all non-zero entries of \( h^{(1)} \) have magnitude larger than \( \alpha /(t-1) \), we have

$$\begin{aligned} \alpha k\ge \Vert h^{(1)}\Vert _1=\sum _{i\in supp (h^{(1)})}|h^{(1)}(i)|\ge \sum _{i\in supp (h^{(1)})}\frac{\alpha }{t-1}=\ell \cdot \frac{\alpha }{t-1}, \end{aligned}$$

which implies \( \ell \le (t-1)k \).

Note that

$$\begin{aligned} \Vert h^{(2)}\Vert _1&=\Vert D^*_{S_0^c}h\Vert _1-\Vert h^{(1)}\Vert _1\le k\alpha -\ell \cdot \frac{ \alpha }{t-1}=(k(t-1)-\ell )\frac{\alpha }{t-1},\\ \Vert h^{(2)}\Vert _\infty&\le \frac{\alpha }{t-1}. \end{aligned}$$

Then in Lemma 6.1, by setting \( s:=k(t-1)-\ell \), we can express \( h^{(2)} \) as a weighted mean:

$$\begin{aligned} h^{(2)}=\sum _{i=1}^{M}\lambda _iu_i, \end{aligned}$$

where \( 0\le \lambda _i\le 1 \), \( \sum _{i=1}^{M}\lambda _i=1\), \( \Vert u_i\Vert _0\le k(t-1)-\ell \), \(\Vert u_i\Vert _\infty \le \alpha /(t-1) \) and \(supp (u_i)\subseteq supp (h^{(2)}) \). Thus

$$\begin{aligned} \Vert u_i\Vert _2\le \sqrt{\Vert u_i\Vert _0}\cdot \Vert u_i\Vert _\infty&=\sqrt{k(t-1)-\ell }\cdot \Vert u_i\Vert _\infty \\&\le \sqrt{k(t-1)}\cdot \Vert u_i\Vert _\infty \\&\le \alpha \sqrt{k/(t-1)}. \end{aligned}$$

Recall that \(\alpha =\frac{\Vert D^*_{S_0}h\Vert _1+2\sigma _k(D^*x_0)_1+\rho }{k}\). Then

$$\begin{aligned} \Vert u_i\Vert _2&\le \alpha \sqrt{k/(t-1)} \nonumber \\&\le \frac{\Vert D^*_{S_0}h\Vert _2}{\sqrt{t-1}}+\frac{2\sigma _k(D^*x_0)_1+\rho }{\sqrt{k(t-1)}}\nonumber \\&\le \frac{\Vert D^*_{S_0}h+h^{(1)}\Vert _2}{\sqrt{t-1}}+\frac{2\sigma _k(D^*x_0)_1+\rho }{\sqrt{k(t-1)}}\nonumber \\&=\frac{z+R}{\sqrt{t-1}}, \end{aligned}$$
(6.26)

where \( z:=\Vert D^*_{S_0}h+h^{(1)}\Vert _2, \,\, R:=\frac{2\sigma _k(D^*x_0)_1+\rho }{\sqrt{k}}\).

Now we suppose \( 0\le \mu \le 1 \), \( d\ge 0\) are two constants to be determined. Set

$$\begin{aligned} \beta _j:=D^*_{S_0}h+h^{(1)}+\mu \cdot u_j,\,\, j=1,\ldots ,M. \end{aligned}$$

Then for any fixed \(i\in [1:M]\),

$$\begin{aligned} \sum _{j=1}^{M}\lambda _j\beta _j-d\beta _i&=D^*_{S_0}h+h^{(1)}+\mu \cdot h^{(2)}-d\beta _i\\\nonumber&=(1-\mu -d)(D^*_{S_0}h+h^{(1)})-d\mu u_i+\mu D^*h. \end{aligned}$$
(6.27)

For \(\sum _{i=1}^M\lambda _i=1\), we have the following identity

$$\begin{aligned}&(2d-1)\sum _{1\le i<j\le M}\lambda _i\lambda _j\Vert AD(\beta _i-\beta _j)\Vert _2^2\nonumber \\&\quad = \sum _{i=1}^{M}\lambda _i\Vert AD(\sum _{j=1}^{M}\lambda _j\beta _j-d\beta _i)\Vert _2^2 -\sum _{i=1}^{M}\lambda _i(1-d)^2\Vert AD\beta _i\Vert _2^2. \end{aligned}$$
(6.28)

In (6.27), we chose \( d=1/2 \) and \( \mu =\sqrt{t(t-1)}-(t-1)< 1/2 \). Then (6.28) implies

$$\begin{aligned} 0&=\sum _{i=1}^{M}\lambda _i\Vert AD(\sum _{j=1}^{M}\lambda _j\beta _j-d\beta _i)\Vert _2^2-\sum _{i=1}^{M}\frac{\lambda _i}{4}\Vert AD\beta _i\Vert _2^2\nonumber \nonumber \\&\overset{(2.27)}{=}\sum _{i=1}^{M}\lambda _i\Vert AD\left( (\frac{1}{2}-\mu )(D^*_{S_0}h+h^{(1)})-\frac{\mu }{2}u_i+\mu D^*h\right) \Vert _2^2-\sum _{i=1}^{M}\frac{\lambda _i}{4}\Vert AD\beta _i\Vert _2^2\nonumber \\&=\sum _{i=1}^{M}\lambda _i\Vert AD\left( (\frac{1}{2}-\mu )(D^*_{S_0}h+h^{(1)})-\frac{\mu }{2}u_i\right) \Vert _2^2\nonumber \\&\qquad +2\left\langle AD\left( (\frac{1}{2}-\mu )(D^*_{S_0}h+h^{(1)})-\frac{\mu }{2}h^{(2)}\right) , \mu ADD^*h\right\rangle +\mu ^2\Vert ADD^*h\Vert _2^2\nonumber \\&\qquad -\sum _{i=1}^{M}\frac{\lambda _i}{4}\Vert AD\beta _i\Vert _2^2 \nonumber \\&=\sum _{i=1}^{M}\lambda _i\Vert AD\left( (\frac{1}{2}-\mu )(D^*_{S_0}h+h^{(1)})-\frac{\mu }{2}u_i\right) \Vert _2^2 \\&\qquad +\mu (1-\mu )\left\langle AD(D^*_{S_0}h+h^{(1)}),ADD^*h\right\rangle -\sum _{i=1}^{M}\frac{\lambda _i}{4}\Vert AD\beta _i\Vert _2^2.\nonumber \end{aligned}$$
(6.29)

We next estimate the three terms in (6.29). First we give the following useful relation:

$$\begin{aligned}&\left\langle D(D^*_{S_0}h+h^{(1)}), Dh^{(2)}\right\rangle \nonumber \\&\quad =\left\langle D(D^*_{S_0}h+h^{(1)}), D(D^*h-D^*_{S_0}h-h^{(1)})\right\rangle \nonumber \\&\quad =\left\langle D(D^*_{S_0}h+h^{(1)}), h\right\rangle -\left\langle D(D^*_{S_0}h+h^{(1)}),D(D^*_{S_0}h+h^{(1)})\right\rangle \nonumber \\&\quad =\left\langle D^*_{S_0}h+h^{(1)}, D^*h\right\rangle -\Vert D(D^*_{S_0}h+h^{(1)})\Vert _2^2\nonumber \\&\quad =\Vert D^*_{S_0}h+h^{(1)}\Vert _2-\Vert D(D^*_{S_0}h+h^{(1)})\Vert _2^2. \end{aligned}$$
(6.30)

Noting that \(\Vert D^*_{S_0}h\Vert _0\le k \), \( \Vert h^{(1)}\Vert _0= \ell \le (t-1)k \) and \(\Vert u_i\Vert _0\le s =k(t-1)-\ell \), we obtain

$$\begin{aligned} \Vert D^*_{S_0}h+h^{(1)}\Vert _0\le \ell +k\le t\cdot k,\quad \Vert \beta _i\Vert _0\le \Vert D^*_{S_0}h\Vert _0 + \Vert h^{(1)}\Vert _0+ \Vert u_i\Vert _0\le t\cdot k, \end{aligned}$$

and

$$\begin{aligned} \Vert (\frac{1}{2}-\mu )(D^*_{S_0}h+h^{(1)})-\frac{\mu }{2}u_i\Vert _0\le t\cdot k. \end{aligned}$$

Here we assume \( t\cdot k \) as an integer first. Since A satisfies the DRIP of order \(t\cdot k\) with constant \(\delta \), we can obtain

$$\begin{aligned}&\quad \sum _{i=1}^{M}\lambda _i \Vert AD\left( (\frac{1}{2}-\mu )(D^*_{S_0}h+h^{(1)})-\frac{\mu }{2}u_i\right) \Vert _2^2\\&\le \sum _{i=1}^{M}\lambda _i(1+\delta )\Vert D\left( (\frac{1}{2}-\mu )(D^*_{S_0}h+h^{(1)})-\frac{\mu }{2}u_i\right) \Vert _2^2\\&=(1+\delta )\left( (\frac{1}{2}-\mu )^2 \Vert D(D^*_{S_0}h+h^{(1)})\Vert _2^2+\frac{\mu ^2}{4}\sum _{i=1}^{M}\lambda _i\Vert Du_i\Vert _2^2\right. \nonumber \\&\qquad \left. -\,\mu (\frac{1}{2}-\mu )\left\langle D(D^*_{S_0}h+h^{(1)}), Dh^{(2)}\right\rangle \right) \\&\overset{(7.30)}{=}(1+\delta )\left( \frac{1}{2}(\frac{1}{2}-\mu ) \Vert D(D^*_{S_0}h+h^{(1)})\Vert _2^2+\frac{\mu ^2}{4}\sum _{i=1}^{M}\lambda _i\Vert Du_i\Vert _2^2\right. \nonumber \\&\qquad \left. -\,\mu (\frac{1}{2}-\mu ) \Vert D^*_{S_0}h+h^{(1)}\Vert _2^2\right) , \end{aligned}$$
$$\begin{aligned} \left\langle AD(D^*_{S_0}h+h^{(1)}), ADD^*h\right\rangle= & {} \left\langle AD(D^*_{S_0}h+h^{(1)}), Ah\right\rangle \\\le & {} \sqrt{1+\delta }\cdot \Vert D(D^*_{S_0}h+h^{(1)})\Vert _2\cdot \epsilon \end{aligned}$$

and

$$\begin{aligned}&\quad \sum _{i=1}^{M}\lambda _i\Vert AD\beta _i\Vert _2^2\\&=\sum _{i=1}^{M}\lambda _i\Vert AD(D^*_{S_0}h+h^{(1)}+\mu \cdot u_i)\Vert _2^2\\&\ge (1-\delta )\sum _{i=1}^{M}\lambda _i\Vert D(D^*_{S_0}h+h^{(1)}+\mu \cdot u_i)\Vert _2^2\\&=(1-\delta )\left( \Vert D(D^*_{S_0}h+h^{(1)})\Vert _2^2+\mu ^2\sum _{i=1}^{M}\lambda _i\Vert Du_i\Vert _2^2+2\mu \left\langle D(D^*_{S_0}h+h^{(1)}), Dh^{(2)}\right\rangle \right) \\&\overset{(7.30)}{=}(1-\delta )\left( (1-2\mu )\Vert D(D^*_{S_0}h+h^{(1)})\Vert _2^2+\mu ^2\sum _{i=1}^{M}\lambda _i\Vert Du_i\Vert _2^2+2\mu \Vert D^*_{S_0}h+h^{(1)}\Vert _2^2 \right) . \end{aligned}$$

Combining the above results with (6.26) and (6.29), we get

$$\begin{aligned} 0&\le \frac{1}{2}(1+\delta )\left( \frac{1}{2}-\mu \right) \Vert D(D^*_{S_0}h+h^{(1)})\Vert _2^2+\frac{1+\delta }{4}\mu ^2\sum _{i=1}^{M}\lambda _i\Vert Du_i\Vert _2^2\nonumber \\&\qquad -(1+\delta )\mu \left( \frac{1}{2}-\mu \right) \Vert D^*_{S_0}h+h^{(1)}\Vert _2^2 \\&\qquad +\mu (1-\mu )\sqrt{1+\delta }\Vert D(D^*_{S_0}h+h^{(1)})\Vert _2\cdot \epsilon \\&\qquad -\frac{1}{4}(1-\delta )(1-2\mu )\Vert D(D^*_{S_0}h+h^{(1)})\Vert _2^2-\frac{1-\delta }{4}\mu ^2\sum _{i=1}^{M}\lambda _i\Vert Du_i\Vert _2^2\nonumber \\&\qquad -\frac{1-\delta }{2}\mu \Vert D^*_{S_0}h+h^{(1)}\Vert _2^2 \\&=\delta (\frac{1}{2}-\mu )\Vert D(D^*_{S_0}h+h^{(1)})\Vert _2^2+(\mu ^2(1+\delta )-\mu )\Vert D^*_{S_0}h+h^{(1)}\Vert _2^2\nonumber \\&\qquad +\frac{\delta }{2}\mu ^2\sum _{i=1}^{M}\lambda _i\Vert Du_i\Vert _2^2+\mu (1-\mu )\sqrt{1+\delta }\Vert D(D^*_{S_0}h+h^{(1)})\Vert _2\cdot \epsilon \\&\le (\delta (\frac{1}{2}-\mu )+\mu ^2(1+\delta )-\mu )z^2+\frac{\delta }{2}\mu ^2\sum _{i=1}^{M}\lambda _i\Vert u_i\Vert _2^2 +\mu (1-\mu )\sqrt{1+\delta }\cdot z\cdot \epsilon \\&\overset{(7.26)}{\le } \left( (1+\delta )(\frac{1}{2}-\mu )^2-\frac{1-\delta }{4} \right) z^2+\frac{\delta }{2}\mu ^2\frac{(z+R)^2}{t-1} +\mu (1-\mu )\sqrt{1+\delta }\cdot z\cdot \epsilon \\&=\left( (\mu ^2-\mu )+\delta \left( \frac{1}{2}-\mu +(1+\frac{1}{2(t-1)})\mu ^2\right) \right) z^2\nonumber \\&\qquad +\left( \mu (1-\mu )\sqrt{1+\delta }\cdot \epsilon +\frac{\delta \mu ^2R}{t-1}\right) z+\frac{\delta \mu ^2R^2}{2(t-1)} \\&=-t\left( (2t-1)-2\sqrt{t(t-1)} \right) (\sqrt{\frac{t-1}{t}}-\delta )z^2\nonumber \\&\qquad +\left( \mu ^2\sqrt{\frac{t}{t-1}}\sqrt{1+\delta }\cdot \epsilon +\frac{\delta \mu ^2R}{t-1}\right) z+\frac{\delta \mu ^2R^2}{2(t-1)}\\&=\frac{\mu ^2}{t-1}\left( -t(\sqrt{\frac{t-1}{t}}-\delta )z^2+(\sqrt{t(t-1)(1+\delta )}\epsilon +\delta R)z+\frac{\delta R^2}{2} \right) , \end{aligned}$$

which is a quadratic inequality for z. Recall that \( \delta <\sqrt{(t-1)/t} \). So by solving the above inequality, we get

$$\begin{aligned} z&\le \frac{(\sqrt{t(t-1)(1+\delta )}\epsilon +\delta R)+\left( (\sqrt{t(t-1)(1+\delta )}\epsilon +\delta R)^2+2t(\sqrt{(t-1)/t}-\delta )\delta R^2 \right) ^{1/2} }{2t(\sqrt{(t-1/t)}-\delta ) }\\&\le \frac{\sqrt{t(t-1)(1+\delta )}}{t(\sqrt{(t-1)/t}-\delta )}\epsilon +\frac{2\delta +\sqrt{2t(\sqrt{(t-1)/t}-\delta )\delta }}{2t(\sqrt{(t-1)/t}-\delta )}R. \end{aligned}$$

We know \( \Vert D^*_{S_0^c}h\Vert _1\le \Vert D^*_{S_0}h\Vert _1+R\sqrt{k} \). In the Lemma 6.2, if we set \( m=N \), \( r=k \), \( \lambda =R\sqrt{k}\ge 0 \) and \( \alpha =2 \), we can obtain

$$\begin{aligned} \Vert D^*_{S_0^c}h\Vert _2\le \Vert D^*_{S_0}h\Vert _2+R. \end{aligned}$$

So

$$\begin{aligned} \Vert h\Vert _2&=\Vert D^*h\Vert _2\\&=\sqrt{\Vert D^*_{S_0}h\Vert _2^2+\Vert D^*_{S_0^c}h\Vert _2^2}\\&\le \sqrt{\Vert D^*_{S_0}h\Vert _2^2+(\Vert D^*_{S_0}h\Vert _2+R)^2}\\&\le \sqrt{2\Vert D^*_{S_0}h\Vert _2^2}+R\le \sqrt{2}z+R\\&\le \frac{\sqrt{2(1+\delta )}}{1-\sqrt{t/(t-1)}\delta }\epsilon +\left( \frac{\sqrt{2}\delta +\sqrt{t(\sqrt{(t-1)/t}-\delta )\delta }}{t(\sqrt{(t-1)/t}-\delta )}+1 \right) R. \end{aligned}$$

Substituting R into this inequality, we can get the conclusion. For the case where \(t\cdot k\) is not an integer, we set \(t^*:=\lceil tk\rceil / k\), then \(t^*>t\) and \(\delta _{t^*k}=\delta _{tk}<\sqrt{\frac{t-1}{t}}<\sqrt{\frac{t^*-1}{t^*}}\). We can prove the result by working on \(\delta _{t^*k}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, B. The \( \ell _1 \)-Analysis in Phase Retrieval with Redundant Dictionary. J Fourier Anal Appl 23, 1097–1117 (2017). https://doi.org/10.1007/s00041-016-9500-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-016-9500-z

Keywords

Mathematics Subject Classification

Navigation