Skip to main content
Log in

Signal Reconstruction from Frame and Sampling Erasures

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We give some new methods for perfect reconstruction from frame and sampling erasures in a small number of steps. By bridging an erasure set we mean replacing the erased Fourier coefficients of a function with respect to a frame by appropriate linear combinations of the non-erased coefficients. We prove that if a minimal redundancy condition is satisfied bridging can always be done to make the reduced error operator nilpotent of index 2 using a bridge set of indices no larger than the cardinality of the erasure set. This results in perfect reconstruction of the erased coefficients. We also obtain a new formula for the inverse of an invertible partial reconstruction operator. This leads to a second method of perfect reconstruction from frame and sampling erasures in a small number of steps. This gives an alternative to the bridging method for many (but not all) cases. The methods we use employ matrix techniques only of the order of the cardinality of the erasure set, and are applicable to rather large finite erasure sets for infinite frames and sampling schemes as well as for finite frame theory. These methods are usually more efficient than inverting the frame operator for the remaining coefficients because the size of the erasure set is usually much smaller than the dimension of the underlying Hilbert space. Some new classification theorems for frames are obtained and some new methods of measuring redundancy are introduced based on our bridging theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexeev, B., Cahill, J., Mixon, D.: Full spark frames. J. Fourier Anal. Appl., 18(6) 1167–1194 (2012)

  2. Balan, R., Casazza, P.G., Edidin, D.: Equivalence of reconstruction from the absolute value of the frame coefficients to a sparse representation problem. IEEE Signal Process. Lett. 14(5), 341–343 (2007)

    Article  Google Scholar 

  3. Balan, R., Bodmann, B.G., Casazza, P.G., Edidin, D.: Frames for linear reconstruction without phase. In: Proceedings of the 42nd Annual Conference on Information Sciences and Systems, pp. 721–726 (2008)

  4. Benedetto, J., Ferriera, P.J.S.G. (eds.): Modern Sampling Theory. Birkhäuser, Boston, MA (2001)

    MATH  Google Scholar 

  5. Bodmann, B.G., Paulsen, V.I.: Frames graphs and erasures. Linear Algebra Appl. 404, 118–146 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bodmann, B.G., Le, M., Reza, L., Tobin, M., Tomforde, M.: Frame theory for binary vector spaces. Involve 2(5), 589–602 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boufounos, P., Oppenheim, A.V., Goyal, V.K.: Causal compensation for erasures in frame representations. IEEE Trans. Signal Process. 56(3), 1071–1082 (2008)

    Article  MathSciNet  Google Scholar 

  8. Cahill, J., Mixon, D.G., Strawn, N.: Connectivity and Irreducibility of Algebraic Varieties of Finite Unit Norm Tight Frames (2013). arXiv:1311.4748

  9. Casazza, P.G., Kutyniok, G.: Robustness of fusion frames under erasures of subspaces and of local frame vectors. Contemp. Math. 464, 149–160 (2008)

    Article  MathSciNet  Google Scholar 

  10. Casazza, P.G., Kutyniok, G.: Finite Frames: Theory and Application. Applied and Numerical Harmonic Analysis. Birkhäuser, Basel (2014)

    Google Scholar 

  11. Casazza, P.G., Kutyniok, G., Li, S.: Fusion frames and distributed processing. Appl. Comput. Harmon. Anal. 25, 114–132 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Casazza, P.G., Kovačević, J.: Equal-norm tight frames with erasures. Adv. Comp. Math. 18, 387–430 (2003)

    Article  MATH  Google Scholar 

  13. Casazza, P.G., Han, D., Larson, D.R.: Frames for Banach spaces, The functional and harmonic analysis of wavelets and frames (San Antonio, TX). Contemp. Math. 247(1999), 149–182 (1999)

    Article  MathSciNet  Google Scholar 

  14. Casazza, P.G., Lynch, R.G., Tremain, J.C., Woodland, L.M.: Integer Frames, Houston J. Math. (2013). arXiv:1307.4328

  15. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Basel (2003)

    Book  MATH  Google Scholar 

  16. Dai, X., Larson, D.R.: Wandering vectors for unitary systems and orthogonal wavelets. Mem. Am. Math. Soc. 134 (1998)

  17. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  18. Goyal, V.K., Kovačević, J., Kelner, J.A.: Quantized frame expansions with erasures. Appl. Comp. Harm. Anal. 10, 203–233 (2001)

    Article  MATH  Google Scholar 

  19. Gröchenig, K.: Foundations of Time Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

  20. Han, D.: Frame representations and parseval duals with applications to Gabor frames. Trans. Am. Math. Soc. 360, 3307–3326 (2008)

    Article  MATH  Google Scholar 

  21. Han, D., Larson, D.R.: Frames, Bases and Group Representations. Memoirs American Mathematical Society, Providence (2000)

    Google Scholar 

  22. Han, D., Kornelson, K., Larson, D., Weber, E.: Frames for Undergraduates. American Mathematical Society Student Mathematical Library, vol. 40. AMS, Providence (2007)

  23. Holmes, R., Paulsen, V.I.: Optimal frames for erasures. Linear Algebra Appl. 377, 31–51 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hotovy, R., Larson, D.R., Scholze, S.: Binary frames, Houston. J. Math (to appear)

  25. Kaftal, V., Larson, D.R., Zhang, S.: Operator valued frames. Trans. Am. Math. Soc. 361, 6349–6385 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lu, Y.M., Do, M.N.: A theory for sampling signals from a union of subspaces. IEEE Trans. Signal Process. 56(6), 2334–2345 (2008)

    Article  MathSciNet  Google Scholar 

  27. Pehlivan, S., Han, D., Mohapatra, R.: Linearly connected sequences and spectrally optimal dual frames for erasures. J. Funct. Anal. 265(11), 2855–2876 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sun, W.: G-frames and g-Riesz bases. J. Math. Anal. Appl. 232, 437–452 (2006)

    Article  Google Scholar 

  29. Zayed, A.I.: Advances in Shannon’s Sampling Theory. CRC Press, Boca Raton (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Larson.

Additional information

Communicated by Peter G. Casazza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larson, D., Scholze, S. Signal Reconstruction from Frame and Sampling Erasures. J Fourier Anal Appl 21, 1146–1167 (2015). https://doi.org/10.1007/s00041-015-9404-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-015-9404-3

Keywords

Mathematics Subject Classification

Navigation