Skip to main content
Log in

Uncertainty Principles and Light Cones

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We prove uncertainty principles of Hardy type that limit the possibility to localize a distribution and its Fourier transform near the cone \(q=0\), for a non-degenerate quadratic form \(q\) of arbitrary signature. The results we present are well known for positive definite \(q\). We describe two types of distributions that optimize the uncertainty principle in this case. The first type are the distributions \(f\) such that \(f\) and \(\widehat{f}\) are supported on the cone \(q=0\). The second type are distributions that depend only on \(q\), that are essentially their own Fourier transform, and that decay like Gaussian functions as \(|q|\rightarrow \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Commun. Pure Appl. Math. 14, 187–214 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Part II. A family of related function spaces. Application to distribution theory. Commun. Pure Appl. Math. 20, 1–101 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bonami, A., Demange, B., Jaming, P.: Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms. Rev. Mat. Iberoam. 19(1), 23–55 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Demange, B.: Uncertainty principles associated to non-degenerate quadratic forms. Mémoires de la Société Mathématique de France, vol. 119, pp. 1–102 (2009)

  5. Gel’fand, I.M., Shilov, G.E.: Generalized Functions. Properties and Operations, vol. 1. Academic Press, New York (1964)

    Google Scholar 

  6. Hardy, G.H.: A theorem concerning Fourier transforms. J. Lond. Math. Soc. 1, 227–231 (1933)

    Article  Google Scholar 

  7. Havin, V.P., Jöricke, B.: The uncertainty principle in harmonic analysis. In: Commutative Harmonic Analysis, III, vol. 72, pp. 177–259, 261–266. Encyclopaedia Mathematical Sciences, Springer, Berlin (1995)

  8. Höormander, L.: The analysis of linear partial differential operators I. Bull. Am. Math. Soc. 16, 161–167 (1987)

    Article  Google Scholar 

  9. Hörmander, L.: A uniqueness theorem of Beurling for Fourier transform pairs. Ark. Mat. 29(2), 237–240 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kolk, J.A.C., Varadarajan, V.S.: Riesz distributions. Math. Scand. 68(2), 273–291 (1991)

    MATH  MathSciNet  Google Scholar 

  11. Shubin, C., Vakilian, R., Wolff, T.: Some harmonic analysis questions suggested by Anderson–Bernoulli models. Geom. Funct. Anal. 8(5), 932–964 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, No. 32. Princeton University Press, Princeton (1971)

    Google Scholar 

  13. Strichartz, R.S.: Harmonic analysis on hyperboloids. J. Funct. Anal. 12, 341–383 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  14. Strichartz, R.S.: Fourier transforms and non-compact rotation groups. Indiana Univ. Math. J. 24, 499–526 (1974/1975)

  15. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1944)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Demange.

Additional information

Communicated by Karlheinz Gröchenig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demange, B. Uncertainty Principles and Light Cones. J Fourier Anal Appl 21, 1199–1250 (2015). https://doi.org/10.1007/s00041-015-9401-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-015-9401-6

Keywords

Mathematics Subject Classification

Navigation