Skip to main content
Log in

Generalized Fourier Frames in Terms of Balayage

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We develop a theory of non-uniform sampling in the context of the theory of frames for the settings of the short time fourier transform and pseudo-differential operators. Our theory is based on profound historical precedents including Beurling’s theory of balayage, emanating from the nineteenth century work of Christoffel and Poincaré, the theory and results from spectral synthesis due to Wiener and Beurling and a host of the major harmonic analysts of the twentieth century, and the theory of sets of multiplicity, going back to Riemann and emerging fundamentally from the Russian school of harmonic analysis in the early twentieth century. Our results are meant to serve as the underpinnings for both theoretical and practical results in the realm of non-uniform sampling. They can also be compared with several other distinct forays into non-uniform sampling, including the settings of quasi-crystals and modulation spaces, where proofs for the latter setting require the analysis of convolution operators on the Heisenberg group. Our theory herein is the first step in which the ultimate goal is computational implementation for non-uniform sampling and its myriad applications, where balayage, spectral synthesis, and sets of multiplicity are computationally quantified. A critical component is to resurrect the formulation of balayage in terms of covering criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory. Springer-Verlag, Berlin (1999)

    Google Scholar 

  2. Ali, S.T., Antoine, J.-P., Gazeau, J.-P.: Continuous frames in Hilbert space. Ann. Phys. (NY) 222, 1–37 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ali, S.T., Antoine, J.-P., Gazeau, J.-P.: Coherent States, Wavelets and Their Generalizations. Graduate Text in Contemporary Physics. Springer-Verlag, New York (2000)

    Book  MATH  Google Scholar 

  4. Bary, N.: A Treatise on Trigonometric Series, Volumes I and II. The MacMillan Company, New York (1964)

    Google Scholar 

  5. Benedetto, J.J.: Spectral Synthesis. Academic Press Inc, New York (1975)

    Book  Google Scholar 

  6. Benedetto, J.J.: Irregular sampling and frames. In: Chui, C.K. (ed.) Wavelets: A Tutorial in Theory and Applications, pp. 444–507. Academic Press Inc., San Diego, CA (1992)

    Google Scholar 

  7. Benedetto, J.J.: Harmonic Analysis and Applications. CRC Press, Boca Raton, FL (1997)

    Google Scholar 

  8. Benedetto, J.J., Czaja, W.: Integration and Modern Analysis. Birkhäuser Advanced Texts. Springer-Birkhäuser, New York (2009)

    Book  MATH  Google Scholar 

  9. Benedetto, J.J., Ferreira, P.J.S.G. (eds.): Modern Sampling Theory, Applied and Numerical Harmonic Analysis. Springer-Birkhäuser, New York (2001)

    Google Scholar 

  10. Benedetto, J.J., Frazier, M.W. (eds.): Wavelets: Mathematics and Applications. CRC Press, Boca Raton, FL (1994)

    MATH  Google Scholar 

  11. Benedetto, J.J., Heil, C., Walnut, D.: Differentiation and the Balian-Low theorem. J. Fourier Anal. Appl. 1, 355–402 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Benedetto, J.J., Kebo, A.: The role of frame force in quantum detection. J. Fourier Anal. Appl. 14, 443–474 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Benedetto, J.J., Wu, H.-C.: A Beurling covering theorem and multidimensional irregular sampling. In: SampTA, Loen (1999)

  14. Benedetto, J.J., Wu, H.-C.: Non-uniform sampling and spiral MRI reconstruction. In: SPIE (2000)

  15. Beurling, A.: Local harmonic analysis with some applications to differential operators. In: Some Recent Advances in the Basic Sciences, Vol. 1. (Proceedings of Annual Science Conference, Belfer Graduate School of Science, Yeshiva University, New York, 1962–1964), pp. 109–125 (1966)

  16. Beurling, A.: On interpolation, Blaschke products, and balayage of measures. In: The Bieberbach Conjecture: Proceedings of the Symposium on the Occasion of the Proof, pp. 33–49 (1985)

  17. Beurling, A.: The Collected Works of Arne Beurling. Harmonic Analysis, vol. 2. Springer-Birkhäuser, New York (1989)

    MATH  Google Scholar 

  18. Beurling, A., Malliavin, P.: On Fourier transforms of measures with compact support. Acta Math. 107, 291–309 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  19. Beurling, A., Malliavin, P.: On the closure of characters and the zeros of entire functions. Acta Math. 118, 79–93 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  20. Butzer, P.L., Fehër, F.: E. B. Christoffel—The Influence of his Work on Mathematics and the Physical Sciences. Springer-Birkhäuser, New York (1981)

  21. Christensen, O.: An Introduction to Frames and Riesz Bases. Springer-Birkhäuser, New York (2003)

    Book  MATH  Google Scholar 

  22. Christensen, O., Deng, B., Heil, C.: Density of Gabor frames. Appl. Comp. Harm. Anal. 7, 292–304 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia, PA (1992)

    Book  MATH  Google Scholar 

  24. de la Vallée-Poussin, C.J.: Le Potentiel, Logarithmique, Balayage, et Répresentation Conforme (1949)

  25. Demanet, L., Ying, L.: Discrete symbol calculus. SIAM Rev. 53, 71–104 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Dini, U.: Sugli sviluppi in serie \(\ldots \) dove le \(\lambda _n\) sono radici equazione trascendente \(f(z)cos(\pi z) + f_1(z)sen(\pi z) = 0\). Ann. Mat. Pure Appl. 26, 261–284 (1917)

    Article  MATH  Google Scholar 

  27. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ehler, M.: Random tight frames. J. Fourier Anal. Appl. 18, 1–20 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ehler, M., Okoudjou, K.: Probabilistic frames: an overview, chapter 12. In: Casazza, P.G., Ktyniok, G. (eds.) Finite Frames: Theory and Applications. Applied and Numerical Harmonic Analysis. Springer-Birkhäuser, New York (2013)

    Google Scholar 

  30. Feichtinger, H.G., Gröchenig, K.H.: A unified approach to atomic decompositions via integrable group representations. In: Function Spaces and Applications (Lund, 1986). Springer Lecture Notes, vol. 1302, pp. 52–73. Springer, Heidelberg (1988)

  31. Feichtinger, H.G., Gröchenig, K.H.: Banach spaces related to integrable group representations and their atomic decompositions. J. Funct. Anal. 86, 307–340 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  32. Feichtinger, H.G., Gröchenig, K.H.: Gabor expansions and the short time Fourier transform from the group theoretical point of view. In: Chui, C.K. (ed.) Wavelets: A Tutorial in Theory and Applications, pp. 359–397. Academic Press Inc, San Diego, CA (1992)

    Chapter  Google Scholar 

  33. Feichtinger, H.G., Sun, W.: Stability of Gabor frames with arbitrary sampling points. Acta Math. Hung. 113, 187–212 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Feichtinger, H.G., Sun, W.: Sufficient conditions for irregular Gabor frames. Adv. Computat. Math. 26, 403–430 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. Feichtinger, H.G., Zimmermann, G.: A Banach space of test functions for Gabor analysis. In: Gabor Analysis and Algorithms, pp. 123–170. Springer-Birkhäuser, New York (1998)

  36. Fornasier, M., Rauhut, H.: Continuous frames, function spaces, and the discretization problem. J. Fourier Anal. Appl. 11, 245–287 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Gabardo, J.-P., Han, D.: Frames associated with measurable spaces. frames. Adv. Comput. Math. 18, 127–147 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  38. Gröchenig, K.H.: Describing functions: atomic decompositions versus frames. Monatsh. Math. 112, 1–42 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  39. Gröchenig, K.H.: Irregular sampling of wavelet and short-time Fourier transforms. Constr. Approx. 9, 283–297 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  40. Gröchenig, K.H.: Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Springer-Birkhäuser, New York (2001)

    Book  MATH  Google Scholar 

  41. Gröchenig, K.H.: A pedestrian’s approach to pseudodifferential operators. In: Heil, C. (ed.) Harmonic Analysis and Applications, pp. 139–169. Springer-BirkhÄuser, New York (2006)

    Chapter  Google Scholar 

  42. Han, D., Wang, Y.: Lattice tiling and the Weyl–Heisenberg frames. Geom. Funct. Anal. 11(4), 742–758 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  43. Heil, C., Walnut, D.F.: Continuous and discrete wavelet transforms. SIAM Rev. 31, 628–666 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  44. Hof, A.: On diffraction by aperiodic structures. Commun. Math. Phys. 169, 25–43 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  45. Hörmander, L.: The Weyl calculus of pseudo differential operators. Commun. Pure Appl. Math. 32, 360–444 (1979)

    Article  Google Scholar 

  46. Ingham, A.E.: A note on Fourier transforms. J. Lond. Math. Soc. 9, 29–32 (1934)

    Article  MathSciNet  Google Scholar 

  47. Jaffard, S.: A density criterion for frames of complex exponentials. Michigan Math. J. 38, 339–348 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  48. Kahane, J.-P.: Sur certaines classes de séries de Fourier absolument convergentes. J. Math. Pures Appl. 35(9), 249–259 (1956)

  49. Kahane, J.-P.: Pseudo-périodicité et séries de Fourier lacunaires. Ann. Sci. É.N.S. 79, 93–150 (1962)

    MATH  MathSciNet  Google Scholar 

  50. Kaiser, G.: Quantum Physics, Relativity, and Complex Space Time. North Holland Mathematical Studies, vol. 163. North-Holland, Amsterdam (1990)

    Google Scholar 

  51. Kellogg, O.D.: Foundations of Potential Theory. Dover Publications Inc, New York (1929)

    Book  Google Scholar 

  52. Kovačević, J., Chebira, A.: Life beyond bases: the advent of frames (part I). IEEE Signal Process. Mag. 24(4), 86–104 (2007)

    Article  Google Scholar 

  53. Kovačević, J., Chebira, A.: Life beyond bases: the advent of frames (part II). IEEE Signal Process. Mag. 24, 115–125 (2007)

    Google Scholar 

  54. Labate, D., Weiss, G., Wilson, E.: An approach to the study of wave packet systems. Contemp. Math. Wavel. Frames Oper. Theory 345, 215–235 (2004)

    Article  MathSciNet  Google Scholar 

  55. Lagarias, J.C.: Mathematical quasicrystals and the problem of diffraction. In: Baake, M., Moody, R.V. (eds.) Directions in Mathematical Quasicrystals, vol. 13, pp. 61–93. AMS, Providence, RI (2000)

    Google Scholar 

  56. Landau, H.J.: Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math. 117, 37–52 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  57. Landau, H.J.: Personal Communication (2011)

  58. Landkof, N.S.: Foundations of Modern Potential Theory. Springer-Verlag, Berlin (1972). (Translated from Russian)

    Book  MATH  Google Scholar 

  59. Levinson, N.: Gap and Density Theorems. American Mathematical Society Colloquium Publications, vol. XXVI. American Mathematical Society, Providence, RI (1940)

  60. Matei, B., Meyer, Y.: A variant of compressed sensing. Rev. Mat. Iberoam. 25, 669–692 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  61. Matei, B., Meyer, Y.: Simple quasicrystals are sets of stable sampling. Complex Var. Elliptic Equ. 55(8–10), 947–964 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  62. Matei, B., Meyer, Y., Ortega-Cerda, J.: Stable sampling and Fourier multipliers. (2013). arXiv:1303.2791

  63. Meyer, Y.: Multiplication of distributions, mathematical analysis and applications. Adv. Math. Suppl. Stud. 7, 603–615 (1981)

    Google Scholar 

  64. Meyer, Yves: Quasicrystals, Diophantine approximation, and algebraic numbers. In: Axel, F., Gratias, D. (eds.) Beyond Quasicrystals, pp. 3–16. Les Editions de Physique, Springer, NY (1995)

    Chapter  Google Scholar 

  65. Meyer, Y.: Quasicrystals, almost periodic patterns, mean-periodic functions, and irregular sampling. Afr. Diaspora J. Math. 13, 1–45 (2012)

    MATH  Google Scholar 

  66. Narcowich, F.J., Sivakumar, N., Ward, J.D.: On condition numbers associated with radial-function interpolation. J. Math. Anal. Appl. 186, 457–485 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  67. Narcowich, F.J., Ward, J.D.: Norms of inverses and condition numbers for matrices associated with scattered data. J. Approx. Theory 64, 69–94 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  68. Olevskii, A., Ulanovskii, A.: Universal sampling and interpolation of band-limited signals. Geom. Funct. Anal. 18(3), 1029–1052 (2008)

    Article  MathSciNet  Google Scholar 

  69. Olevskii, A., Ulanovskii, A.: On multi-dimensional sampling and interpolation. Anal. Math. Phys. 2, 149–170 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  70. Paley, R.E.A.C., Wiener, N.: Fourier transforms in the complex domain. In: American Mathematical Society Colloquium Publications, vol. XIX. American Mathematical Society, Providence, RI (1934)

  71. Riesz, F., Sz-Nagy, B.: Functional Analysis. Frederick Ungar Publishing Co., New York (1955)

    Google Scholar 

  72. Romero, E.: A complete Gabor system of zero Beurling density. Sampl. Theory Signal Image Process. 1, 299–304 (2002)

    Google Scholar 

  73. Schwartz, L.: Théorie des Distributions. Hermann, Paris (1950, 1951, 1966)

  74. Seip, K.: On the connection between exponential bases and certain related sequences in L\(^2(-\pi,\pi )\). J. Funct. Anal. 130, 131–160 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  75. George, S.: Shapiro, Balayage in Fourier transforms: general results, perturbation, and balayage with sparse frequencies. Trans. Am. Math. Soc. 225, 183–198 (1977)

    Article  MATH  Google Scholar 

  76. Shapiro, G.S.: Unique balayage in Fourier transforms on compact abelian groups. Proc. Am. Math. Soc. 70(2), 146–150 (1978)

    Article  MATH  Google Scholar 

  77. Shapiro, H.S.: Bounded functions with one-sided spectral gaps. Michigan. Math. J. 19, 167–172 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  78. Stein, E.M.: Harmonic Analysis. Princeton University Press, Princeton, NJ (1993)

    MATH  Google Scholar 

  79. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton, NJ (1971)

    MATH  Google Scholar 

  80. Wang, Yang: Sparse complete Gabor systems on a lattice. Appl. Comp. Harm. Anal. 16, 60–67 (2004)

    Article  MATH  Google Scholar 

  81. Wu, H.-C.: Multidimensional irregular sampling in terms of frames. Ph.D. thesis, University of Maryland, College Park (1998)

  82. Young, R.: An Introduction to Nonharmonic Fourier Series, 1980 Revised Edition. Academic Press, New York (2001)

    Google Scholar 

  83. Zygmund, A.: Trigonometric Series, Volumes I and II combined, 1959, Revised Edition. Cambridge University Press, New York (1968)

    Google Scholar 

Download references

Acknowledgments

The first named author gratefully acknowledges the support of MURI-AFOSR Grant FA9550-05-1-0443. The second named author gratefully acknowledges the support of MURI-ARO Grant W911NF-09-1-0383, NGA Grant HM-1582-08-1-0009, and DTRA Grant HDTRA 1-13-1-0015. Both authors benefited from insightful observations by Professors Carlos Cabrelli, Hans Feichtinger, Karlheinz Gröchenig, Matei Machedon, Basarab Matei, Ursula Molter, and Kasso Okoudjou, as well as important technical assistance for one of our examples by Professor Gröchenig. We have also incorporated the referees’ suggestions, that we very much appreciate. In general, these suggestions have translated into an adjusted and expanded introduction, as well as some added and suppressed details. Further, although the interest of the second named author in this topic goes back to the 1960s, he is especially appreciative of his collaboration in the late 1990s with Dr. Hui-Chuan  Wu related to Theorem 4.2 and the material in Sect. 6. Finally, the second named author has had the unbelievably good fortune through the years to learn from Henry J. Landau, a grand master in every way. His explicit contributions for this paper are noted in Sect. 4.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Benedetto.

Additional information

Communicated by Hans G. Feichtinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Au-Yeung, E., Benedetto, J.J. Generalized Fourier Frames in Terms of Balayage. J Fourier Anal Appl 21, 472–508 (2015). https://doi.org/10.1007/s00041-014-9369-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-014-9369-7

Keywords

Navigation